N V A DEPARTMENT OF
COMPUTER SCIENCE

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

N VA DEPARTMENT OF
COMPUTER SCIENCE

NOVA SCHOOL OF

SCIENCE & TECHNOLOGY

PHYSICS-INSPIRED MACHINE LEARNING FOR ORBIT
DETERMINATION IN LOW-EARTH ORBIT

JOAO PEDRO DE NORONHA FUNENGA

Undergraduate in Computer Science

Adviser: Claudia Alexandra Magalhdes Soares
Assistant Professor, NOVA University Lisbon

Co-advisers: Marta Guimaréaes
Machine Learning Engineer, Neuraspace

Henrique Rego Costa
Flight Dynamics Engineer, Neuraspace

MASTER IN ANALYSIS AND ENGINEERING OF BIG DATA

NOVA University Lisbon
August, 2023

Physics-Inspired Machine Learning for orbit determination in Low-Earth Or-
bit

Copyright © Joao Pedro de Noronha Funenga, NOVA School of Science and Technology,
NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the
right, perpetual and without geographical boundaries, to file and publish this dissertation
through printed copies reproduced on paper or on digital form, or by any other means
known or that may be invented, and to disseminate through scientific repositories and
admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

ACKNOWLEDGEMENTS

This project was an immensely challenging academic endeavor that tested my limits and
pushed me beyond what I thought was possible. It was a team effort, and I want to extend
my heartfelt appreciation to everyone who contributed to its success.

First and foremost, I want to thank my adviser, Claudia Soares, who invited me to
embark and venture on this endearing project. I am also grateful to my co-adviser, Marta
Guimaraes, who provided invaluable advice and support, making this work what it is.
I also want to thank my temporary co-adviser, Henrique Costa, for his guidance and
assistance in tackling this problem and for also passionately getting me into this topic.
Furthermore, I am thankful to Neuraspace for providing me with the opportunity to
conduct this research with them.

I owe my deepest gratitude to my closest family throughout this journey. They contin-
uously reminded me of what life is all about and endured my countless practice presen-
tations, even though most of them did not understand a word in English. To my mother,
Teresa, the strongest person I know who ensured that I finished the dissertation and
provided me the best emotional support I could ask for while facing her own challenges.
To my father, Fernando, who helped me stay calm during stressful moments. To my
grandparents, Libania and Anténio, who have always been my number one supporters
and shaped the person I am today.

I would also like to express my gratitude to my closest friends, Catarina Almeida,
Joao Brioso, Guilherme Garrillha, André Costa, Filipe Nunes, Martim Silva, Francisco
Ramalho, Diogo Pinto, Francisco Caldas, Joel Santiago, and all the others who have sup-
ported me throughout my life. Each of you provided me with unconditional support in
your unique ways, and I am forever grateful for your friendship.

Finally, I would like to thank music and the role it played as being my constant
companion. Additionally, I am grateful for the friendships that have blossomed through
our shared love for music and the support given by these relationships.

This research was carried out under Project “Artificial Intelligence Fights Space De-
bris” N° C626449889-0046305 co-funded by Recovery and Resilience Plan and NextGen-

eration EU Funds, www.recuperarportugal.gov.pt.

iv

“You can’t really start living until you can live with yourself.”
(Thebe Neruda Kgositsile)

ABSTRACT

We have always been told since we were little that space is infinite. Having this in mind,
it would not make much sense to be so cautious and aware of the space that lies above us.
However, the area right above the Earth’s surface up to 2000 km is heavily contaminated
with space debris which can have all kinds of origins and dimensions both man-made
(inactive satellites, parts of rockets, minuscule flecks of paint) as well as from natural
sources (small meteoroids). Considering that satellites have their propellant carefully
measured to fulfill the planned trajectory and cannot afford evasion maneuvers at the
slightest danger signal, it is important to quantify the uncertainty on the predictions
made.

To predict when two objects will collide, one will need to model their orbits with
the goal of knowing their positions. Among the multiple elements involved, such as the
gravity potential or the shape of the object, space weather is the most difficult to predict.
Because of these stochastic variables, the early discoveries from multiple scientists in
the eighteenth century were only enough to describe an orbit in the perfect case scenario.
These variables make the modeling of a real orbit more challenging since they are random
and have to be considered when modeling them since their effects are not negligible. One
of the variables that has the most impact on calculating the orbit of a space object is
atmospheric density. Since we are dealing with a physical system that abides by physical
laws, even if not perfectly, this will be used to our advantage to improve the predictions
made. As aforementioned, these laws known for centuries can be too tailored for the
perfect-case scenario and new equations can be discovered to better model a real-case
scenario. The objective of this research is to employ physically informed machine learning
techniques for orbit determination as well as to model atmospheric density by leveraging

physical domain knowledge and improving upon the standard approach.

Keywords: Physically-Informed Neural Networks, Data-driven physical discovery, Space

Debris, Orbital Mechanics, Orbit determination

vi

ReEsumMmo

Sempre nos foi dito desde pequenos que o espago € infinito. Tendo isto em conta, nao
faria muito sentido ser tao cauteloso e consciente acerca do espago que se encontra acima
de nds. No entanto, a zona mesmo acima da superficie terrestre até 2000 km esta bastante
poluida com detritos espaciais que podem ter todo o tipo de origens e dimensodes tanto
de origem humana (satélites inactivos, pequenas partes de foguetes, lascas de tinta), bem
como de fontes naturais (pequenos meteoroides). Considerando que os satélites tém o
seu combustivel cuidadosamente medido para a trajectdria que esta planeada e nao pode
realizar manobras evasivas ao menor perigo, é importante quantificar a incerteza sobre
as previsoes feitas.

Para prever quando dois objectos irao colidir, sera necessaria a modelagao das suas
orbitas com o objectivo de conhecer as posi¢des respetivas, cujo procedimento tem multi-
plas variaveis envolvidas, sendo as mais dificeis de prever, as relacionadas com o tempo
espacial. Estas variaveis estocasticas mudam a forma de como as descobertas de multiplos
cientistas do século XVIII descreverem como se definia uma orbita perfeita. Estas varia-
veis tornam a modelacao de uma orbita real mais desafiadora uma vez que sao aleatérias
e tém de ser consideradas uma vez que os seus efeitos nao sao desprezaveis. Uma das
variaveis que tem mais impacto no calculo das 6rbitas é a densidade atmosférica.

Uma vez que estamos perante um sistema fisico que obedece as leis fisicas, mesmo
que nao perfeitamente, isto sera utilizado a nosso favor para melhorar as previsoes feitas.
Como acima mencionado, estas leis conhecidas ha séculos tém como funcao modelar o
caso perfeito e novas equagoes podem ser descobertas para melhor representar um cenario
real. O objectivo deste trabalho é, com a utilizacao de uma rede neuronal para prever a
densidade atmosférica juntamente com o conhecimento do dominio fisico, as previsoes
feitas serao melhoradas comparativamente a uma abordagem em que é desprezado o

contexto do sistema em que se inserem.

Palavras-chave: Redes Neuronais fisicamente informadas, Descoberta de equagdes basea-

das em dados, Lixo espacial, Mecanica Orbital

vii

CONTENTS

List of Figures X
List of Tables xiii
Glossary xiv
Acronyms XV
1 Motivation and Problem Statement 1
2 Orbital Dynamics 6
2.1 KeplerianOrbit 6
2.2 Oblateness 7
2.3 Current Atmospheric Density Modelling 8

3 Physically-Inspired Machine Learning 10
3.1 Stateoftheart 13
3.1.1 PINNs e 13

3.1.2 Predicting atmosphericdensity 15

3.1.3 SINDy e 18

4 Exploratory Data Analysis 22
4.1 Dataset e 22
4.2 Variations over time - orbital elements 23
4.3 Variable Distributions L 24
4.4 Correlation e 25
4.5 Additional External Data 26
4.6 DataFidelity 27

5 Preliminary Work 28
5.1 Candidate Nonlinear Functions 28

CONTENTS

5.1.1 Domain-Driven Custom Functions 28

5.1.2 Polynomial Functions 29

52 Results 29

5.2.1 Choice of the SINDy Optimizer 30

5.2.2 Firstorder PDE L L. 30

5.2.3 Polynomial Library 31

5.2.4 Multiple Trajectories, 33

5.3 Data with full dynamics 34

5.3.1 Custom Library, 35

5.3.2 Polynomial Library 35

5.3.3 Multiple Trajectories 35

54 SecondorderPDEs 36

5.4.1 Polynomial Functions 36

5.4.2 Multiple Trajectories 37

5.5 Noise Analysis: Robustness to heavy-tailed noise 37

6 Predictive Methods for State Vectors 40

6.1 SINDy. e 40

6.2 LSTM Network e 41

6.3 Feed Forward Network 42

6.3.1 Input Width = 1000, Output Width=30. 43

6.3.2 Input Width = 500, Output Width=30 44

6.4 PINN 46

6.4.1 Unbounded Coefficients 47

6.4.2 Bounded Coefficients 51

7 Comparing SINDy with PINNs 62

8 Atmosphere Density 66

8.1 PINN . . . e 66

82 SINDy e 67

9 Future Work 69

9.1 Conclusion 70

Bibliography 71
Annexes

I Annex1 - CCDF Plots 79

II Annex 2 - Normal Probability Plots 81

III Annex 3 - Correlation Plot 82

ix

List OF FIGURES

1.1 Debris distribution e
1.2 SolarCycle

2.1 Orbital Elements. e

2.2 Error for current atmosphericmodels 000
3.1 PINNsDiagram,

4.1 Orbital Elements-Part2 e e
4.2 Correlation Plot - External Variables

4.3 Dataovertime i i e e e e

5.1 Single Orbit Performance with Custom Functions
5.2 SINDy - Relative Errors and Training Times
5.3 Single Orbit Performance
5.4 Multiple Orbits Performance
5.5 Single Orbit Performance with full dynamics
5.6 Multiple Orbits Performance with full dynamics
5.7 Robustness of SINDy to Different Types of Noise

6.1 Loss Evolution for Different Architectures and 1000 Input Steps
6.2 Loss Evolution for Different Architectures and 500 Input Steps
6.3 PINNDiagram e
6.4 PINN - Loss Evolution for Different Architectures and 1000 Input Steps . .
6.5 PINN - Predictions (x) for Different Architectures and 1000 Input Steps . .
6.6 PINN - Predictions x for Different Architectures and 1000 Input Steps . . .
6.7 PINN - Loss Evolution for different architectures and 500 Input Steps . . .
6.8 PINN - Predictions (x) for Different Architectures and 500 Input Steps .
6.9 PINN - Predictions (x) for Different Architectures and 500 Input Steps .
6.10 PINN - Loss Evolution for Different Architectures, 1000 Input Steps and 0.1
Weight

12

24
26
27

31
31
33
34
35
36
37

43
45
46
48
48
48
50
50
51

52

LIST OF FIGURES

6.11 PINN - Loss Evolution for Different Architectures, 1000 Input Steps and 0.5
Weight
6.12 PINN - Loss Evolution for Different Architectures, 1000 Input Steps and 0.9
Weight
6.13 PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.1
Weight
6.14 PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.1
Weight
6.15 PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.5
Weight
6.16 PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.5
Weight
6.17 PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.9
Weight
6.18 PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.9
Weight
6.19 PINN - Loss Evolution for Different Architectures, 500 Input Steps and 0.1
Weight
6.20 PINN - Loss Evolution for Different Architectures, 500 Input Steps and 0.5
Weight
6.21 PINN - Loss Evolution for Different Architectures, 500 Input Steps and 0.9
Weight
6.22 PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.1
Weight
6.23 PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.1
Weight
6.24 PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.5
Weight
6.25 PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.5
Weight
6.26 PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.9
Weight
6.27 PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.9
Weight

7.1 DataFormat e e

7.2 SINDy - Errors for Positions and Velocities over time

8.1 PINN - Relative Errors for Density Predictions
8.2 SINDy - Relative Errors for Density Predictions

I.1 CCDFPlots-Positions ittt i

xi

53

54

54

54

55

55

55

56

57

58

58

59

59

59

60

60

60

64
65

67
68

79

LIST OF FIGURES

1.2
I.3

II.1
II.2
I1.3

III.1

CCDF Plots - Velocities v o i s e e e s e e

CCDF Plot - Drag

Normal Probability Plots - Positions
Normal Probability Plots - Velocities
Normal Probability Plot-Drag

Correlation Plot

xii

79
80

81
81
81

83

List oOF TABLES

4.1 Variable Descriptions 23

5.1 Noise Analysis - Custom Library 37
5.2 Noise Analysis - Polynomial Library

xiii

orbital elements

Principal Component Analysis

state vector

GLOSSARY

A set of 6 elements that are needed to define a Keple-
rian Orbit 6

PCA is a statistical technique used for dimensionality
reduction having the objective of transforming high-
dimensional data into lower-dimensionsional while re-

taining as much information as possible. 16

A vector corresponding to the state of a satellite. It
consists of the position and velocity values in each axis.
Additionally, the acceleration values can be added to
the vector. 2, 6, 22

Xiv

ACRONYMS

bPINNs Bayesian Physically-informed Neural Networks 13
FROLS Forward Regression Orthogonal Least-Squares 30

GANs Generative adversarial networks 12

GEO Geosynchronous Equatorial Orbit 1
HASDM Air Force Space Battlelab’s High Accuracy Satellite Drag Model 16
LEO Low Earth Orbit 1, 2, 16, 17, 20, 21, 34

MEO Medium Earth Orbit 1

ML Machine Learning 4, 5, 10, 11, 13, 15, 16, 17

NN Neural Network 5,10, 11,13, 16

PDE Partial Differential Equation 5, 11, 12, 13, 14, 15, 18, 19, 28, 29, 31, 32, 35, 36,
38,39, 70

PINNs Physically-informed Neural Networks 4, 5, 11, 12, 13, 14, 15, 28, 46, 47, 61,
62, 65, 69,70

RAAN Right Ascension of the Ascending Node 23
RSO Resident Space Object 20, 21

SINDy Sparse identification of nonlinear dynamical systems 17, 18, 19, 20, 21, 28, 29,
30, 32, 34, 36, 38, 39, 62,70

SSO Sun-synchronous Orbit 21

SVM Support Vector Machine 21

XV

MOTIVATION AND PROBLEM STATEMENT

Space debris consists of objects orbiting the Earth. Sometimes this term might be in-
terpreted as only man-made objects but official sources [3] state that it also includes
natural debris like meteoroids. This results in a different term since most of the mete-
oroids are orbiting around the sun while most of the man-made debris orbits around
the Earth, the latter being referred to as orbital debris. The three main space regions
polluted with debris are Low Earth Orbit (LEO) which ranges from 200 km to 2000 km
of altitude, Medium Earth Orbit (MEO) which corresponds to the region between LEO
and Geosynchronous Equatorial Orbit (GEO), and finally GEO which has a constant
altitude of around 36000 km as seen in Figure 1.1(a).

Monthly Effective Mass of Objects in Earth Orbit by Region
11111

—LEO (below 2000 km alt)
——MEO (2000-35,586 km alt)
——GEO (35,586-35,986 km alt)

—Above GEO (35,986-600,000 km al]

Effective Mass (kg)

(a) Representation of space debris (b) Space debris mass distribution

Figure 1.1: Debris distribution - A depiction (not to scale) of the distribution of space
debris and a plot corresponding to the distribution of the debris mass between different
space regions over the years. Three main regions seen are LEO (cloud around the earth),
MEO (region between LEO and GEO) and GEO (further away ring) respectively [2].

Orbital debris consists of man-made objects that no longer serve a useful purpose
ranging from a whole non-functional spacecraft to fragments of destroyed satellites. One
major event that notably increased the amount of space debris in LEO was the chinese anti-
satellite missile test [74] whose objective was to be the first space mission since 1985 to
intercept a satellite. This consisted of using another spacecraft as a kinetic weapon hitting

the original satellite which resulted in around 3,000 pieces of trackable debris that ended

1

CHAPTER 1. MOTIVATION AND PROBLEM STATEMENT

up being in orbit in LEO and an estimated 32,000 smaller untracked pieces. The initial
debris cloud generated was spread out over all of LEO after three years. Just two years
later, there was an accidental collision between two communication satellites (Russian
and American) in which the Russian satellite had already been deactivated previously to
the impact that occurred at a velocity of 11.7 km/s [18]. This impact resulted in 2,000
pieces of debris, measuring at least ten centimeters in diameter, and many thousands
of smaller pieces that will remain in orbit for years, posing a threat to other objects
in LEO [26, 75]. This increases the importance of dealing with space debris such as this
deactivated satellite and the dangers they still pose even when they are no longer being
operated.

Having these pieces of debris in orbit freely sharing the same space with active space-
crafts worth millions of euros poses a big threat and is extremely risky for their safety.
Collisions with debris, even of a small dimension, should be avoided, given that small
objects in an orbit can reach speeds as high as 8 km/s in LEO with a similar effect to a bul-
let [44]. The design of the satellites take these hazards into consideration [45]. However,
there are specific parts that cannot be easily protected and their damage can significantly
hinder efficiency. This is the case of solar panels, for example, which when impacted may
cause a disastrous electrical discharge that disrupts onboard systems [14, 4].

Focusing our attention now oo the active satellites, orbits cannot be perfectly defined
by the seventeenth century Keplerian model. This model considers that the Earth is a
perfect sphere, which is far from true due to its oblateness [12, section 4.7] and it considers
that a satellite is only affected by the Earths gravity force. This model neglects any kind of
gravitational interactions with other objects, atmospheric drag or solar radiation pressure.

One of the forces that impacts the positions of satellites the most is drag [67, 41]. If
this is not taken into account, propagating the position of a satellite for the next 24 hours
using such a simplified model can entail a large error. This is due to the fact that drag
reduces the size of the orbit over time, meaning that the altitude of perigee will remain
approximately constant but the altitude of apogee gets smaller [42]. If one discards these
changes, the errors for the positions will increase continuously.

The satellites in orbit around the Earth have at least three major forces applied to them
which are the gravity that pulls them downwards towards the Earth, drag which reduces
their acceleration and acts in the opposite direction of the velocity, and the propulsion
force which can be occasionally applied for corrective maneuvers, attitude control or a
collision avoidance maneuver [1]. Knowing these forces, it is possible to solve a second
order differential equation that describes the dynamics of the satellite. By integrating the
acceleration we get the velocity of the satellite and integrating twice we get the position
which means that by only knowing the acceleration it is possible to get the velocity and
position. Having one state vector for a satellite and knowing which forces are applied, we
can propagate the orbit, calculating its state vector in the future. Accurately determining
the state vectors provides a comprehensive understanding of these forces and their impact

on the trajectory of satellites. By considering these factors holistically, satellite operators

2

can anticipate and mitigate their effects, ensuring the satellite stays on its intended path.
The differential equation that governs the motion of satellites and is used for propagating
the orbit is given by
2

%7: —#V—Emg—c?s]{p, (1.1)
where p is the Earth standard gravitational parameter, 7 is the position vector of the
satellite relative to the center of the Earth, c?dmg is the acceleration vector of drag and
dsrp is the solar radiation pressure applied on the satellite.

The presence of drag in equation (1.1) changes the nominal trajectory of the object,
mainly reducing its altitude, which is why, as time goes by, maneuvers need to be per-
formed and, in some cases, propellant needs to be used to get the satellites back to their
nominal altitude. The drag, related to the velocity and physical properties of the satellite,
is described as

irag = 50Co - I, (12)
where p corresponds to the atmospheric density, Cp is the drag coefficient of the satellite,
A is the reference area of the satellite, m is the mass of the satellite and 7 the velocity
vector of the satellite.

All of the terms in (1.2) are rather easily measured or calculated apart from one which
has the most uncertainty associated with its predictions, the atmospheric density [41].
This real positive variable is a function of the position in space and time. Atmospheric
density is stochastic and cannot be easily determined for a timestamp in the future. This
variable has a regular behavior in certain conditions which is currently well modeled.
One example is the following, the space that is turned towards the Sun (during the day,
between the Sun and the Earth) compared to the space on the other side of the Earth
(during the night) has a higher density because the atmosphere receives more energy
from the Sun and is denser at higher altitudes [61]. However, there is a phenomenon that
is still not well modeled and affects this property of the atmosphere. The Sun has cycles
with a period of about eleven years and consist on movements of masses of magnetically
charged gas that ultimately causes a flip on the solar magnetic field, with the North and
South poles exchanging places. The solar cycle features movements of large solar activity
— solar flares — that can cause impacts on Earth, e.g., on the electric grid [16] or even on
the positions of satellites themselves [32, 24, 53].

As the solar cycle progresses (as seen in 1.2), the amount of activity also varies which
results in more solar explosions. The beginning of the cycle is a solar minimum in which
the activity is smaller and at the middle of the cycle, the Sun reaches its solar maximum in
which there are more solar explosions. This solar activity naturally affects the atmospheric
density but unfortunately these explosions are difficult to predict [35] and this results in
added uncertainty about the position of the satellites which in the worst case scenario
can make spacecraft unusable.

CHAPTER 1. MOTIVATION AND PROBLEM STATEMENT

Adjusted F10.7 flux

450

400

Cycle 22
350 Cycle 18 Cycle 19
Cycle 23

300

S Cycle 20 Cycle 24
& 250

150

100

50 ° ° o o ° °

1945 1955 1965 1975 1985 1995 2005 2015

Figure 1.2: Solar Cycle and the evolution of the Solar Activity

It is important to note that in (1.1), apart from the drag term, there are other forces
applied on a satellite for example the solar radiation pressure, its interaction with other
celestial bodies or even interactions with other satellites. However, these interactions are
often discarded due to the trade-off between the difficulty of calculating these extra terms
and the decrease in performance by considering them in the equations. Since every object
in space has a gravitational force applied from every other object this would end up being
intractable. With this in mind, one approach we will follow is to use a technique called
Sparse Identification of Non-Linear Dynamics (explained in 3.1.3) in order to uncover
the governing equations of a system with an empirical approach having the possibility of

discovering extra terms that are not in the known theoretical equations.

Physically-informed Machine Learning was recently created specifically to model
difficult physical systems [30, 22, 49, 55]. Apart from the classical least squares regres-
sion methodology discovered in the end of the 1700’s by Gauss to fit a line to observed
data with the goal of making predictions for the future [66], Machine Learning (ML)
has recently been having a lot of advances and its advantages are broadly talked about.
Considering that one has a large enough training dataset, it is possible to find a model
that accurately describes interactions between multiple variables which in turn helps on
making better predictions. However, classical ML has one big problem in this context, it
relies on having sufficiently large training datasets. This is where Physically-informed
Neural Networks (PINNs) come in. These are a type of neural network that incorpo-
rate physical laws into the design and training of the network, more specifically on the
optimization process. Since the model integrates the laws of the physical system, such
constraints to the prediction space are thought to improve the predictions made, due to
the knowledge that they must follow the laws that rule that physical system [37], even if
not thoroughly. PINNSs are trained by aggregating observed data from a specific system

4

with known physical laws in order for its predictions to be consistent with the physics
that rule that system.

With traditional numerical methods, solving real-world physics problems with data
measured across different time intervals or noisy boundary conditions is impossible [31].
These kinds of methods are usually very rigorous and need a lot of assumptions that most
of the time are impossible to guarantee in the real-world. This is where ML comes in
hand, due to its ability to identify multidimensional correlations easily and solve ill-posed
problems that would be intractable with traditional methods. This approach with Neural
Network (NN) is efficient and simple [31], enabling difficult simulations at the expense of
being harder to run. In a purely data-driven approach, it is possible to obtain models that
are very accurate for the training data, but the predictions made may be physically incon-
sistent or implausible leading to a very poor generalization in the test data. Because of
this flaw on the predictions by this type of model, it is necessary to add fundamental laws
of physics and domain knowledge that serves as prior information and introduces bias
(in addition to the inherent observed bias that is necessary for the model to learn assump-
tions). In summary, this means we are using prior physical and mathematical knowledge
of the domain to help improve the performance of the model. The main motivation for
building these types of algorithms is to have models that remain robust in the event of
missing data or noisy values and can predict accurately and consistently by leveraging
the physics of the system in which they are embedded. For complex physical systems, the
amount of data that exists is limited given the complex behavior to be captured by the
model so a purely data driven approach would not work.

The amount of existing data associated with the problem and the physical laws that
are known to represent the system [31] can be seen as three categories of problems. On
one extreme there is the case where little data is available (just the data for the initial
and boundary conditions) to work with, but everything is known about the physics of the
system (down to the coefficients of the partial derivative equations that define it). On the
other extreme, one may not even know anything about the physics of the system but big
data is available to use thus one should follow a data-driven approach in which advantage
can be taken from the huge amount of data being worked with. In the middle, there is
a balance between the two, in which there is some physical knowledge about the system
(possibly with some values for missing parameters) and also some data to work with, this
is where PINNs shine and where they are most useful to apply.

In this intermediate case when one can assume that there is partial knowledge of the
physics, this usually corresponds to partially knowing the conservation laws which is
not enough to derive the constitutive relationships. This kind of problem where we have
a little bit of both can lead to very complex scenarios where the solution of the Partial
Differential Equation (PDE) is a stochastic process due to external stimuli that can be
random or an uncertain property of a material and therefore stochastic PDEs can be used

to represent these stochastic solutions and uncertainties.

2

ORBITAL DYNAMICS

The field in which this problem is inserted has quite a lot of terminology and context that
is crucial to understand before delving into the data analysis or what the state of the art
is on approaching this problem.

2.1 Keplerian Orbit

The data that will be available for each satellite corresponds to the positions and velocities
in a J2000 frame [48] and in a Cartesian referential for the three axes over time (state
vector). From this information, it is possible to define an orbit in multiple formulations,
the most common one being the Keplerian Orbit [12, section 4.4]. To define an orbit,

there are 6 parameters which are also referenced as orbital elements [73].

Z

Orbital Satellite
Plane

Perigee

Equatorial
Plane

Vernal
Equinox X

Apogee

Figure 2.1: Visual representation of the orbital elements

Firstly, the semimajor axis (represented as SMA in 2.1) corresponds to the distance

6

2.2. OBLATENESS

from the center of the orbit to the farthest point from the center (apogee). Secondly,
the eccentricity is a ratio concerning the shape of an orbit. This parameter describes
how much an orbit deviates from a perfect circle and it ranges from 0 to 1. This means
that an orbit with eccentricity 1 is represented by a line and an orbit with eccentricity 0

corresponds to a perfect circle. This ratio is given by

eccentricity = Tapogee ~ Tperigee rperigee,

Tapogee t Tperigee

where 7,,04¢c COrresponds to the distance between the point where the body is the farthest
from the earth and the earth whereas 7,4, corresponds to the distance between the
point where it is the closest to earth and the earth.

The following parameter is the inclination (represented as i in 2.2) of the orbit which
corresponds to the angle between the equatorial plane and the orbital plane, ranging
from 0° to 180°.

The next parameter is the right ascension of the ascending node (represented as Q
in 2.1) which is a measure of the orientation of an orbit in space. It is defined as the angle
between the direction of the vernal equinox, which is a fixed reference point in the sky
and the point where the orbit of an object intersects the equatorial plane.

The following parameter, argument of perigee (represented as w in 2.1), corresponds
to the angle between the ascending node of the body to the perigee of the orbit which
represents an arc. This means that if this argument is zero, the lowest point (altitude-
wise) in the orbit of the object will correspond to the crossing of the equatorial plane of
the celestial body it is revolving around.

This leaves us with one parameter left that does not define the orbit per se but is used
to determine the position of the body in the orbit itself, the true anomaly (represented as
vin 2.1).

With these parameters now known, it is possible to describe a Keplerian orbit. The
position of a satellite is already given by the state vector that defines it but this new
representation helps by giving a different perspective on how the trajectory of an object
in an orbit is described. This representation is independent of the viewing perspective
which means they can be used to predict the position from any point and represent a
standardized way of looking at the motion of celestial objects making it easier to analyze

and compare different orbits.

2.2 Oblateness

Due to the high rotational speeds, planets tend to bulge out around the equator because
of centrifugal force [8]. Measuring the Earth, its equatorial radius is 21 km larger than the
polar radius [12, section 4.7]. This flattening at the poles of the Earth is called oblateness
and can be described by the ratio

CHAPTER 2. ORBITAL DYNAMICS

Tequatorial — Tpolar

oblateness =
Tequatorial

Lacking the symmetry that a sphere has, signifies that for an orbiting body around the
Earth, the gravity force is not directed towards the center of the earth and depends both
on the distance from its center and the latitude it is in, which can be seen as the angular
distance from the equator, a phenomenon called zonal variation [12, section 4.7]. What
is important to take from knowing that we are not dealing with the perfect case scenario
is that this occurrence changes the orbit parameters over the time which in turn results
in changing the orbit itself.

The average rate of change of precession of the orbital plane (node line) is given by Q

which can be expressed as

2
Q:—[éM cos 1, (2.1)

21 _62)2a%

where p is the gravitational parameter of the celestial body,], is a dimensionless param-
eter that quantifies the effects of the oblateness of that celestial body on orbits, R is the
radius of the celestial body, e is the eccentricity, a is the semi-major axis and i is the incli-
nation of the orbit. Interpreting (2.1), it is possible to conclude that when the inclination
of the orbit is between 0° and 90°, the rate of change of precession of the orbital plane
is smaller than 0 which will drift posigrade orbits westwards. In case the inclination is
between 90° and 180°, that rate is larger than 0 which means the orbits will drift in the
opposite direction (eastwards). If the inclination of the orbit is exactly 90°, the orbit plane
will not rotate.
The average rate of change of the argument of perigee is
2
a'):—[é—\/ﬁbR (gsinzi—Z).

2 (1-e2)2q3

This represents that if its inclination is between 0° and 63.4° or between 116.6° and
180°, the rate of change is positive which means the perigee advances in the direction the
satellite is moving. If the inclination is between 63.4° and 116.6° the opposite happens,
and the perigee regresses. Similarly to what happens with the node line, if the inclination

is exactly 63.4° or 116.6° the perigee does not change position.

2.3 Current Atmospheric Density Modelling

Going back to our problem, there are currently two popular neutral density models that
try to model the atmospheric density, JB08 and NRMLSIS [6, 51, 76]. The former has an
excellent calibration of densities concerning solar radiation although having a low global
resolution since the temperature at the thermosphere base is fixed and the semi-annual

variation is not calculated in a physically-informed manner. The latter has less variables

8

2.3. CURRENT ATMOSPHERIC DENSITY MODELLING

but encapsulates more domain knowledge concerning the physical system leading to a
more accurate model. The atmospheric density has two low peaks and two high peaks
each year (Semi-Annual Variation) resulting in lower densities during the summer in
the northern hemisphere summer compared to the summer in the southern hemisphere.
Whereas JB08 uses an empirical adjustment to the densities after they are derived from the
exospheric temperature, in NRLMSIS the exospheric temperatures are modified before
deriving densities.

In Figure 2.2 that compares both of these models, it is possible to see that the error
for JB08 is increasing exponentially whereas the error for NRMLSIS is not. However, it is
possible to see that the error is larger for the latter up to the fifth day meaning one cannot
be said to be better than the other, it is a matter of the use-case. After 7 days, the position
calculated for a satellite can have an error of around 8 km using the JBO8 model and of
around 3 km for the NRLMSIS. This means that if an operator is trying to determine if
there will be a collision between two objects in 7 days, if the error is 3 km for each of the
bodies, both of them will have an accumulated error of 6 km which can be dangerous in
critical applications such as in a collision avoidance scenario.

The main goal of this work is to develop a model which not only reduces the errors
achieved by the state-of-art techniques but also change the exponential behaviour of the

error.
Position error - Swarm A

84 gravity order: 70 — JB08
gravity degree: 70
third body: ['Sun', '‘Moon'] NRLMSIS

drag: True
atmosphere: NRLMSIS
.0

ns_sfd version: 0.7.0

Error [km]
iy

0 1 2 3 4 5 6 7
Time since t0 (2014-01-07 23:59:44) [days]

Figure 2.2: Error for the positions increases exponentially for JBO8 although being smaller
than with NRMLSIS for the first 4 days.

3

PHYSICALLY-INSPIRED MACHINE

LEARNING

As stated in the first chapter (1), Physically-Inspired Machine Learning has been gaining
a lot of traction over the last few years. Using ML techniques coupled with physical
knowledge helps to better model and predict variables in a physical system compared to
a data-centric approach.

When building a Physically-Informed learning algorithm, certain biases need to be
introduced to steer the learning process towards identifying physically consistent solu-
tions. Some biases, such as observational biases, are inherently introduced, while others,
including inductive and learning biases, can be enforced by us [31]. Firstly, observational
bias is introduced through the data, which implicitly respects the underlying physics of
the problem. Secondly, inductive bias corresponds to assumptions that can be incorpo-
rated into a NN (for example forcing the predictions to satisfy a set of physical laws), and
thirdly, learning bias which can be introduced when choosing the loss function, using
constraints on the NN or inference algorithms that may favor convergence to solutions
that respect the implicit physical laws. By tuning these soft constraints, the physical laws
can only be approximately respected, which increases the flexibility of implementing
these kinds of laws. Using all these biases [49] together to create a physically consistent
system is a good approach and it can be done in the following way:

* Observational biases - are the main pillar of advances in ML and the easiest way
to introduce biases in ML. With enough data to cover the input domain of a given
problem, ML methods can make fairly accurate predictions for both interpolations
and extrapolations. With the increase of sensor networks, it becomes easier to follow
the evolution of a given phenomenon over time and space. This means that the
observed data reflects the underlying physical principles that govern its generation.
However, here we need to keep in mind the problem of getting reliable data due to
the expenses of collecting it. In our case of predicting future state vectors, this type

of bias refers to the reliance on historical data for training a model.

* Inductive bias - physical equations that are known of governing the system can be

10

introduced. However, this can only be done for systems that are characterized by
relatively simple or well-defined physical principles, so most of the time very com-
plex and laborious implementations are required. For example, to solve differential
equations using a neural network, the network can be made to exactly satisfy the
respective initial conditions. To illustrate this, considering the previous example
of predicting future positions of an object in space using a ML model. If we know
that the motion of that object is governed by Kepler’s laws, we can incorporate these
equations into the model. By encoding the equations into the network architec-
ture and training process, we can ensure that the predictions made by the network
adhere to the underlying physics. This means that the network can be designed
to exactly satisfy the respective initial conditions or following exactly the known
governing equations. By introducing this inductive bias, the network can leverage
the known physical principles to make more accurate and physically meaningful
predictions.

Learning Bias - Instead of designing a specialized architecture that implicitly en-
forces prior knowledge (laws and constraints imposed by inductive bias), these
constraints are softly imposed, penalizing the loss function appropriately. This
approach can be seen as a specific case of multitask learning because an algorithm
is simultaneously constrained to fit the data but also to give predictions that ap-
proximately satisfy physical constraints. The flexibility of soft constraints allows
for the incorporation of more domain-specific knowledge that is harder to be 100%
respected. The solutions obtained via optimization with soft constraints can be seen
as the equivalent to the maximum a posteriori estimation of a Bayesian formulation.
For instance, having the aforementioned loss function defined, one can distinctly
penalize the part corresponding to how much the data respects the physical equa-
tions so that it is possible to find the perfect balance between the data-fidelity part

and how much the data respects the governing physical equations.

One way to put physically-informed machine learning to use is by using PINNs. These

aggregate the information from the observed data with PDEs, incorporating the PDEs

into the loss function of the network which can be of many types (high order, integro-

differential equations, fractional PDEs, stochastic PDEs). For the architecture of the

network, on the left side of Figure 3.1 (NN without being physically-informed) lies the

solution of the PDE u(x, t) found by a “traditional” ML approach, and on the right side

(physically-informed) represents the residual of the PDE [31]. The loss function can be

represented by a weighted sum of both the supervised loss of the observed data of u as

well as the unsupervised loss of the PDE resulting in

< =waaaLaata + WpDELPDE

11

CHAPTER 3. PHYSICALLY-INSPIRED MACHINE LEARNING

<e? Loss

Done Y

Figure 3.1: PINNs diagram (Burger’s equation example) - NN side corresponds to the
supervised predictions and PDE correspond to the residual loss. The final Loss value
corresponds to a sum of the data loss with the residual loss. The model is trained until
the loss value is smaller than a certain defined threshold (&).

where the weight values are empirically assigned depending on how much importance
we want to give to the predictions made strictly with the data and how much will they
respect the physical equations. &;,;, corresponds to the data loss which is represented
by the MSE between the predicted values and the respective labels. £ppp corresponds
to the residual loss which is the difference between the predicted values and the known

equations that they need to respect.

Deep learning typically requires large amounts of data for training [5] and, as dis-
cussed, in many real-world problems it is very difficult to obtain the desired amount of
data. Looking at our problem, acquiring valuable space data means that there is a need
to have multiple satellites in orbit logging their positions and velocities continuously and
accurately which might not always be the case. In these situations, physically-informed
learning has the advantage of achieving strong generalization when less data is avail-
able. By enforcing physical equations, these deep learning models are constrained to a

low-dimensional manifold thus being able to be trained on fewer data.

For physically-informed learning models there are at least 3 sources of uncertainty.
Firstly due to physics which represents stochastic physics systems. This is represented
by the parametric uncertainty due to the randomness of the parameters (Generative ad-
versarial networks (GANs) are very good for solving high-dimensional stochastic PDEs).
Secondly, due to data. This uncertainty can appear either due to the presence of noise in
the data or because of limited data (e.g. gappy data) which is usually the case in this con-
text of gathering data from satellites. This type of uncertainty can be well addressed with

the Bayesian framework that has uncertainty quantification associated with it. However,

12

3.1. STATE OF THE ART

how to define the prior for Bayesian Physically-informed Neural Networks (bPINNs) in a
systematic way is still an open question. Thirdly, due to learning models. For example,
training and testing errors of NNs are difficult to quantify or the data used could have

been handpicked and does not represent reality.

3.1 State of the art

3.1.1 PINNs

Using PINNs might seem like it will give out interesting results immediately because
of combining the power ML has due to its non-linear perspective of the data together
along with leveraging the knowledge of the physics of the system. However, some prob-
lems might affect its usage which some researchers have tried to tackle using various
techniques.

In [34] researchers noticed that PINNs tend to fail in slightly complex problems
(which can be for example when the PDE coefficients are too large). Problems with

a PDE constraint can be thought of as

F(u(x,1)=0, xeQcRY, te[0,T]

where F corresponds to a differential operator representing a PDE, u(x, t) corresponds to
the state variable, T corresponds to the last timestep and Q to the spatial domain. One
approach to incorporate physical knowledge is to apply the previous equation as a hard
constraint during the training of a neural network which corresponds to the following

optimization problem

(3.1)

s.t. F(w)=0
where &£ (u) is the loss purely from the data and the constraint corresponds to the residual
of the PDE that describes that system being 0. In the real world, it is impossible to derive
a solution for (3.1), and treating it as a hard constraint can make the problem impossible

to solve. By altering the optimization problem, looking at it from another perspective

mein L(u,0)+ AgF(u) (3.2)

here Ay works as a regularization parameter to penalize the PDE residual we want to
minimize but still allow it to be different from 0. Afterward, typical ML optimization
methods are used to minimize the previous loss (3.2). By tuning these parameters, what
was observed was that when increasing it (bigger penalization on large residuals) the
predictions were better but made the problem much harder to optimize whereas reduc-
ing the regularization factor made the problem easier to solve with the disadvantage of

coming with a larger error.

13

CHAPTER 3. PHYSICALLY-INSPIRED MACHINE LEARNING

To solve this problem, two methods were proposed, curriculum regularization and
addressing the problem as a sequence-to-sequence learning task. Curriculum regular-
ization works as follows, instead of starting with PDEs with high coefficients from the
start, the network starts by training with small coefficients which are easier to learn, and
increases them as the training goes on. This helps to “warm start” the network by first
finding good initialization weights and progressively making the PDE harder to solve.
Looking at the results obtained by the researchers, the error was reduced by at least 1 or-
der of magnitude by applying this technique, and the variance of the error also decreased,
thus making the model more stable. Sequence-to-sequence focuses on predicting the
solution only for the next timestep () rather than for all of the time-space. Additionally,
when it has to predict the solution for the timestep ¢ + 1, it uses the predicted value at ¢
as the initial condition.

As it was stated by the investigators of the previous paper, the main cause for the
PINNSs failure were optimization problems associated with the soft approach concerning
the PDE residual inclusion in the minimization problem [34]. More work has been put
into this field, specifically in [39]. Since a typical loss function of a PINN can have

multiple terms, which can be seen as tasks, it is described as a multi-objective problem

min Z(0°",05 k=1,.,K

osh gk
where the number of terms is given by K, 0°" corresponds to the shared parameters
between tasks, and 6F to task specific parameters. To simplify the problem what can
be done is calculate a weighted (A;) sum of the losses of each task (Z) turning it into a

single-objective problem as

K
min ;Akgk(ash,ek) (3.3)

It is here where the problem appears, discovering which weights to use for each of the
optimization tasks in (3.3) is extremely hard because these individual objectives can have
conflicting goals due to countless reasons such as numeric imbalances between variables,
the standard deviation not being constant along the training time or by a phenomenon
called catastrophic forgetting which corresponds to the network forgetting what was
learned during the non-physically-informed step before incorporating the domain knowl-
edge with the PDEs.

When dealing with a problem of this sort, some objectives will have larger gradients
than others which will bias the optimization process to focus on those objectives and
disregard the objectives with smaller gradients, which in the long run will amplify this
problem until the tasks with smaller gradients are completely discarded, which is called
“vanishing task-specific gradients”. This extols the necessity of having a well-defined
methodology for discovering which weights can be used to balance each of the terms.

14

3.1. STATE OF THE ART

The method proposed that best solves this problem is Inverse Dirichlet Weighting
which is based on defining the weights based on the variance of the gradient. The aim
with this approach is for the weights to have their variances over the back-propagated
gradients (VsZx) become equal across all objectives meaning the problem of vanishing
task-specific gradients will not be present. This means the weights would be calculated
as

. _ maxi—, k(std{VgsZLr(7)})

.....

Std (Vg Zi (7))

where the standard deviation is empirically determined over the vector components. For
optimizers that are invariant to diagonal scaling of the gradients (which ADAM is for

example [33]), there is a faster way to calculate the weights

std{veshsek(z)}oc\/L Vg L (7)|2d0O (3.4)

which means the standard deviation that needs to be calculated to determine the weights
is proportional to the inverse of the square root of the Dirichlet energy of each objec-
tive (being much more efficient to calculate). This strategy, (3.4), uses weights that are
inversely proportional to training uncertainty (defined by the variance of the loss gradi-
ents) instead of the uncertainty from the observational noise of the model which other
techniques that aim to do the same do (Weighting based on mean gradient statistics [39]).

It is important to state that PINNs are known to be difficult to optimize and converge
to an optimal solution as researched in [34, 72, 68, 70]. The application of PINNs en-
counters challenges in achieving stable training and making accurate predictions. This
is particularly notable when the underlying solutions of PDEs involve high-frequency
or multi-scale features [21]. Recent research conducted in [71] has attributed this con-
cerning behavior to multi-scale interactions among distinct terms within the PINNs loss
function. These interactions engender stiffness in the dynamics of gradient flow, thus
imposing stringent stability requisites on the learning rate.

In an effort to alleviate this pathological behavior, in [71] an empirical learning-rate
annealing scheme was developed. This method used back-propagated gradients statistics
to adaptively allocate weights to the terms in the PINNs loss function. This strategic
approach aims to balance the magnitudes of back-propagated gradients. While the imple-
mentation of this scheme has been demonstrated to yield noteworthy enhancements in
the training and accuracy of PINNSs, the reasons behind the complexities associated with

training fully connected PINNs remains unclear [21].

3.1.2 Predicting atmospheric density

Currently, the state of the art concerning the modeling of atmospheric density is based
on ML techniques along with strong domain knowledge [56].

15

CHAPTER 3. PHYSICALLY-INSPIRED MACHINE LEARNING

As stated in [67] the major source of error in predictive models for orbits in LEO
is atmospheric drag and the presence of these errors will hinder the predicted satellite
positions. The Air Force Space Battlelab’s High Accuracy Satellite Drag Model (HASDM)
estimates and predicts a dynamically varying global density field.

This new ML-HASDM thermospheric neutral mass density model [56] is based on
the database with data from over two decades generated by the HASDM (2000-2020). It
works by first applying Principal Component Analysis to reduce the dimensionality of
the problem, and afterward applying a traditional machine learning regression model
to predict the variable. For this ML problem, there were three loss functions tested,
mean squared error, the negative logarithm of predictive density, and continuous ranked
probability score. There are also used three different input sets to reduce the bias that may
be present using only one. The models generated by this process also take advantage of
Monte Carlo dropout to generate probabilistic outputs from which the model uncertainty
is calculated.

One of the biggest obstacles for these kinds of physical models is the scarcity of real
data measurements [43], particularly in LEO. This region is influenced by the external
factors aforementioned (e.g. solar emissions and explosions) that by being measured
help the performance of these types of models. These external factors hinder the perfor-
mance of modeling atmospheric density due to the changes they cause in nominal orbits
and since none of them are completely predictable, operators have to make decisions
concerning collision avoidance based on uncertainty measurements associated with the
predictions since they can largely affect the predicted value [9].

The data used by these investigators contains archived atmospheric density values in
LEO for multiple altitudes, latitudes, and longitudes given by HASDM. They also use
eight other variables for the solar activity alone, one of them being F10.7 (explained in
Chapter 4) and an extra two corresponding to geomagnetic activity. Concerning their
implementation, firstly PCA has to be used to reduce the problems of high dimensionality
that would make the model impossible to run. Afterward, the data was fed to a feed-
forward NN. For the hyperparameters of the network, KerasTuner was used to identify
the best combination for every hyperparameter.

For assessing uncertainty quantification there is one ML technique that can be used
for this purpose: dropout. Dropout works as a regularization method to prevent overfit-
ting [64] and it uses a binomial distribution with one trial for each neuron with a certain
probability P representing if it will be “on” or “off”. This means that it reduces the de-
pendence between neurons as the network is forced to learn multiple representations of
the same data (by using the different neurons that will have different inputs). Normally,
dropout is only used for training purposes, meaning that during the test phase, all of
the neurons will be “on”. What is applied here is the Monte Carlo dropout which works
by applying dropout both on training and testing. This means that the final predictions
will not be deterministic and depend on which neurons were randomly chosen to be “on”.

The goal is to generate random predictions which can be looked at as samples from a

16

3.1. STATE OF THE ART

probabilistic distribution from which the uncertainty quantification is taken given all of

the predictions.

Concerning their results, it was referred that the added historical geomagnetic indices
to the dataset improved the performance of the model, reducing the error across the
different sets from 0.72% to 2.09% from the errors measured without the added variables.
Incorporating the custom loss function NLPD [56] also reduce the calibration error (which
is used to judge the reliability of the uncertainty estimates) by an order of magnitude

compared to the mean squared error loss.

This work was of particular difficulty during times when solar activity was higher
due to additional storms that can occur and not be easily predicted which raises the need
for extra data for periods where the AP index (explained in section 4.5) is higher. It
was also stated that the dimensionality reduction technique used (PCA) might not be
the best because it is based on a linear transformation and when applied to reduce the
complexity of the problem, it does not accurately represent the data. Perhaps a non-linear
transformation technique would improve the predictions of the model due to a better

lower-dimension representation.

As it is possible to notice, even though this model is ML-based, it is rather limited by
the need for high-fidelity data which is extremely hard to get in a large quantity as well
as the necessity of reducing the dimension of the problem due to the extensive number
of variables it has. Since the ML part of this problem is not physically-informed, lacking
the domain awareness that physically-informed ML brings to the table by leveraging
known physical equations, there is a need for more data which is hard to get. By using a
physically-informed neural network instead of a traditional feed-forward network, it is

possible to incorporate this knowledge into the predictions made.

Another approach to improve the existing atmospheric density models has been de-
veloped in [46]. This work seemed interesting at first sight due to also using Sparse identi-
fication of nonlinear dynamical systems (SINDy) to discover the governing equations of a
system. This approach focused on using an autoencoder-based model of the thermosphere
to obtain a reduced-order representation of the density field in which the dynamics used
for this reduced embedding (latent space) would be discovered with SINDy. The pipeline
of this work focuses on using previously existing density field data and using it to feed
the autoencoder. At this step, SINDy is used to discover the equations in the latent space
and together with the known physical equations in LEO, they are used to predict the
states from GPS data along with a Kalman Filter. At the end of the pipeline, the estimated
states for the reduced embedding have to be decoded to retrieve the density field to be
compared with the true density. Even if this work is closer to what we will do, it does
not follow a physically-informed ML approach, it uses the SINDy equations along with
a Kalman filter for predicting the states which can have some problems when applied

concerning numerical accuracy [63].

17

CHAPTER 3. PHYSICALLY-INSPIRED MACHINE LEARNING

3.1.3 SINDy

The approach followed in this work to predict the atmospheric density by following the
pipeline of first discovering the equations that rule the dynamical system that describes
the orbits along with its perturbations, and integrating them in a PINN afterward, has not
yet been done in any research work. With this approach, there are a couple of problems
that are solved implicitly because if we can learn equations that describe an orbit, we end
up modeling extra unknown parameters for example the attitude of the satellite as well
as parameters related to drag by encapsulating everything in a known equation. The state
of the art for discovering atmospheric density does not work with as few data as we will
be working with, both in measurements and variables, and is not able to do what can be
done by the PDEs to describe the orbits themselves but only the mass density parameter
itself.

To discover the equations that rule the physical system we will be taking advantage
of a state of the art technique, which is SINDy. SINDy, proposed by Steven Brunton [65],
aims to extract governing equations from observed data while prioritizing sparsity. This
trend of employing and using sparsity in dynamical systems is recent but growing in
popularity [52, 58]. The fundamental assumption underlying SINDy is that the discov-
ered equations will consist of only a few terms. This sparsity assumption enhances the
robustness of the model by reducing sensitivity to noise and preventing the identification
of extra residual terms solely due to noisy input. Being insensitive to noise is critical
when it comes to an algorithm to identify dynamics from data [59, 13] This goes hand
in hand with a parsimonious approach reflecting that a model can be represented by a
few terms and does not need extra useless terms that would promote overfitting. This
approach introduces a trade-off between complex and sparse models. On the one hand,
a complex model accurately captures the intricacies of a system, but it risks overfitting
the specific dataset used for model discovery. On the other hand, a sparse model is less
complex, incorporates fewer terms, and avoids overfitting. However, it may sacrifice some
accuracy compared to the more complex model. In this context, model complexity refers
to the number of terms in the discovered equations. We will use a framework developed
in Python to leverage the capabilities of SINDy [29].

Considering a set of measurements x(t) € IR” at different points in time t, SINDy
models the time evolution of such measurements in terms of a nonlinear function f.

Thus, the dynamical system for x(t) is given by

L x()= Fla), (35)

where x(£) = [x1(£), xp(£), -+, %, (£)] T represents the state of the physical system at time t,
and f(x(t)) constrains how the system evolves over time.

The implementation of SINDy requires a dataset comprising measurements collected

at specific time instances, t,t;,---, t,. Furthermore, the corresponding time derivatives of

such measurements are also needed. These datasets are then organized into two matrices:

18

3.1. STATE OF THE ART

X, containing the measurements, and X, which stores the corresponding time derivatives.
The user also provides a library of candidate functions, @(X). Such library consists of a
set of basis functions that will be applied to the data. For example, the polynomial library
used in Chapter 5 would be defined as

I | |
OX)=|1 x xP xbB Xxh
I | |

where the polynomials have to be described as, for example for the second degree

x%(tl) x1(t1)xa(t) x%(tl) xa(ty)
P - xi(t) xi(b)xa(t) ... x3(h) ... xi(h)
x%(tm) xl(tm)XZ(tm) x%(tm) x;%(tm)

We want to find a set of sparse coefficient vectors

(. |
EX)=| & & .. & |
[|

where &; defines the coefficients for a linear combination of the basis functions from ©(X).

Thus, the approximation problem underlying SINDy can be defined as
X =0O(X)E. (3.6)

Each column of E corresponds to a sparse vector of coefficients that determine which
terms will be active in the PDEs discovered for one of the row equations x; = f(x). After
the coefficient vectors are determined, each row corresponds to X = fi(x) = ©(xT)&;.

In practical scenarios, it is common for the data matrices X and X to be affected by
noise, resulting in deviations from the nominal identity in (3.6). In cases where the
measurements in X are relatively clean but the derivatives in X are noisy, the equation

can be modified to account for this noise
X=0(X)Z+14Z, (3.7)

where Z corresponds to a matrix of i.i.d. Gaussian random variables with mean zero and
standard deviation #.

To solve (3.7) for E to find the coefficients, there are a couple of approaches that can
be taken from using LASSO [23] which promotes sparsity but can be computationally
expensive for large datasets or an algorithm like sequential thresholded least-squares [65].

With this algorithm, it starts by finding a least-squares solution for the variable =.
Subsequently, coefficients that fall below a predetermined threshold value A are truncated.

Once the indices of the non-zero coefficients are identified, another least-squares solution

19

CHAPTER 3. PHYSICALLY-INSPIRED MACHINE LEARNING

targeted towards these indices for Z is calculated. The newly obtained coefficients also
undergo the cutoff using A, and this is repeated until the non-zero coefficients converge
to a sparse solution. Notably, this also has the advantage of only needing one parameter,
A to dictate the extent of sparsity in =.

SINDy needs the correct function library in order to correctly identify the dynamics
which can be hard to know [65]. Here, physics knowledge can help leverage the usefulness
of data to steer the process of choosing the correct functions to simplify dynamics.

In recent years, there has been growing interest in applying the SINDy algorithm
to extract governing equations and uncover hidden dynamics from observational data.
While SINDy has shown promise in various applications, such as discovering equations
of motion and identifying relevant terms in dynamical systems, its specific utilization for
predicting state vectors of satellites has received limited attention in the literature.

Several studies have successfully applied SINDy to various domains, such as fluid
dynamics [20] or biochemical systems [40]. Moreover, SINDy has proven effective in
identifying the equations of motion and understanding system behavior in mechanical
systems. For example, in [27], the authors employed SINDy to reveal the underlying
mathematical model governing the motion of a damped double pendulum. The authors
successfully captured the system dynamics and accurately predicted its motion using the
derived equations by analyzing experimental data. While SINDy has not been applied
explicitly for predicting state vectors of satellites, it has indeed found applications within
space research. One such notable example is [47], where SINDy was employed to derive
best-fitting differential equations governing the spatial and temporal evolution of the
thermospheric density field. This approach allowed for real-time density estimation, an
essential factor in understanding the dynamics of space objects in LEO due to atmospheric
drag. In [47], the ability of SINDy to extract governing equations from observed data
while promoting sparsity was demonstrated in the space domain, enabling a concise and
interpretable representation of the thermospheric density dynamics. The effectiveness of
the method in this context showcases its potential for understanding complex systems
within space research.

The rapid expansion of global satellite communication companies, advancements
in miniaturized satellites, and revolutionary ideas such as autonomous nanosatellite
swarms [25] have significantly amplified the potential for conflicts and collisions among
these orbiting entities. Consequently, ensuring accurate and timely trajectory predictions
for space objects has become crucial to establish a solid foundation for present and future
space situational awareness systems. The traditional physics-based models used for orbit
prediction often fail to achieve the required accuracy, leading to collisions due to the lack
of essential information about the space environment and characteristics of the Resident
Space Objects (RSOs), which can be challenging to acquire. Machine Learning techniques
have been used to predict satellite state vectors. In [50], the authors address the chal-
lenges of efficiently and accurately predicting the orbit of RSOs for space situational
awareness and collision avoidance purposes. The growing population of space objects in

20

3.1. STATE OF THE ART

orbits in LEO has recently become a primary concern for space situational awareness [17].
To overcome these limitations, the authors in [50] hypothesize that a machine learning
approach can learn the underlying patterns of orbit prediction errors from historical
data. They specifically explore using Support Vector Machines (SVMs) [69] to enhance
the accuracy of orbit predictions. The SVM model is designed and trained at a current
epoch and then utilized to reduce the orbit prediction error at a future epoch. Through
simulations involving RSOs in a Sun-synchronous Orbit (SSO), the study demonstrates
that the trained SVM model effectively captures the underlying relationships between
the learning variables and provides desirable predictions for the orbital motion. It shows
promising results with good average and individual performance in reducing prediction
errors. The paper also indicates that there is a limit to the improvements once suffi-
cient data has been utilized for training the model. One drawback is that it needs to be
updated frequently in practice. Orbit predictions should not be made too far into the
future. The findings of this paper add to the body of research exploring machine learning
approaches for orbit prediction accuracy improvement. While our work focuses on apply-
ing SINDy to discover the governing equations of satellite motion, using an SVM in orbit
prediction showcases the potential of various machine learning techniques in enhanc-
ing space-related predictions. The combination of diverse approaches can contribute to
advancing space situational awareness and managing space objects in the future. How-
ever, despite the wide-ranging applications of SINDy, its direct application for predicting
state vectors of satellites from observational data remains unexplored. To the best of our
knowledge, no previous work has specifically investigated the use of SINDy or similar
methods to directly predict state vectors of satellites, maintaining the physical meaning of
the variables predicted. This represents a significant gap in the literature, as an accurate
and interpretable prediction of satellite trajectories is crucial for multiple space-related
applications, including orbit determination, collision avoidance, and mission planning.
Through this research, we aim to demonstrate the effectiveness of SINDy for predicting
state vectors and contribute to the broader field of satellite trajectory analysis. By lever-
aging the vast amount of available observational data in conjunction with high-fidelity
simulators, we strive to enhance our understanding of the dynamics and interactions that

drive satellite motion, thus enabling improved satellite operations.

21

4

EXPLORATORY DATA ANALYSIS

Before changing the theme of this work from a theoretical to a more practical perspective
it is important to understand the data that we will work with. This chapter will be dedi-
cated to Exploratory Data Analysis on the dataset used hitherto which has the probability

of being changed due to reasons that will be explained in this section.

4.1 Dataset

The dataset used is publicly available from Planet [36] and by default when accessed,
it downloads a file that corresponds to data from that day. Before creating a script to
download data from the beginning, we first analyzed that single file to understand what
we would work with. This first file corresponded to 28-07-2022 and had 338 samples and
10 columns: satelliteID, epochSince, positionX, positionY, positionZ, velocityX, velocityY,
velocityZ, ballistic drag coefficient, and SRP as seen in 4.1.

All columns will be used apart from SRP (which represents solar radiation pressure)
for not being currently fit to the data. Each sample in this context can also be referred to
as a state vector. A state vector corresponds to the state of a satellite. It consists of the

position and velocity values in each axis at a given epoch.

After understanding the data we had in hand, we quickly realized that it would be
better to download every file so that we could detect and analyze the evolution of the
variables over time. The state vectors files downloaded and used were all given by Planet
from 15-04-2020 up until 28-12-2021.

For this analysis, we decided to convert the state vectors from a cartesian coordinate
system to a keplerian orbit representation. The reason behind this choice was that it is
not intuitive, for the analysis part at least, for a human to look at an orbit defined by these
variables. For example, if one wants to see how much an orbit plane rotates over time, it
is not directly interpretable with cartesian coordinates on how that would be seen and
proved. However, with a keplerian orbit, it is possible to see the right ascension of the
ascending node changing over time which describes just that.

22

4.2. VARIATIONS OVER TIME - ORBITAL ELEMENTS

Name Units Description

Satellite ID - Satellite Hardware ID (HWID, a 4-
digit hex number)

EpochSince Seconds Seconds since J2000 epoch Terrestrial
Time

PositionX Meters X-coordinate position of the satellite
in J2000 frame

PositionY Meters Y-coordinate position of the satellite
in J2000 frame

PositionZ Meters Z-coordinate position of the satellite
in J2000 frame

VelocityX Meters/Second X-coordinate velocity of the satellite
in J2000 frame

VelocityY Meters/Second Y-coordinate velocity of the satellite
in J2000 frame

VelocityZ Meters/Second Z-coordinate velocity of the satellite
in J2000 frame

Ballistic Drag Coefficient | Kilogram/Meters® | Coefficient representing atmospheric
drag effects

SRP ballistic coefficient | Kilogram/Meters? | Solar Radiation Pressure acting on
the satellite

Table 4.1: Variable Descriptions

4.2 Variations over time - orbital elements

To have an idea of how these variables change over time, a visual representation is the
best way of getting a glimpse of what is happening which passes the responsibility of
understanding the patterns to us. Referring back to chapter 2, where the orbital elements
of a keplerian orbit were explained, we will now use all of the measurements over the
time available concerning the satellite with ID 0903 to look at how these variables varied,
shown in Figure 4.1. Firstly, the argument of perigee looks like having a pattern repeating
itself over time with its value ranging from 4 radians to -6 radians and a period of around
115 days. Concerning Right Ascension of the Ascending Node (RAAN), mentioned in the
previous paragraph, it is possible to see it varies continuously linearly which means that
the orbit plane rotates completely back to its original orientation after around 1 year.
The eccentricity of the orbit made by this satellite appears to be varying around values
near 0, which means it is an almost circular orbit. It also looks like it is periodical, with
its value around 115 days which coincides with the period of the argument of perigee.
Relatively to the semi-major axis, this variable looks like it has a rather uniform distribu-
tion with a slightly decreasing tendency. This makes sense because, in the orbit a satellite
does, its height related to the surface of the Earth also reduces slightly due to the effect of
atmospheric drag. Concerning the inclination of the orbit, this variable is well described
with a sinusoidal-looking wave, varying the angle made between the orbital plane and

the equatorial plane from around 97.86° to 98.09° which is a really small disturbance

23

CHAPTER 4. EXPLORATORY DATA ANALYSIS

Eccentricity 1e6 Semi Major Axis Inclination

0.0044 . -~ . 1712 ﬁ‘
.. 6.980 S
3
1711 ;ﬁ }i
00037 * F+
6.975 13 ‘ X
§ g 1710 ': A
0.002 26970 E " ¥ 2
\ jf kY
0.001 6.965 . 2 ,
1.708 v L
0.000 o s . - N : 6.960
6.4 6.5 6.6 6.7 6.8 6.9 6.4 6.5 6.6 6.7 6.8 6.9 6.4 6.5 6.6 6.7 6.8 6.9
Se d: 1le8 Se d: 1le8 Seconds 1le8
(a) Eccentricity (b) Semi-major Axis (c) Inclination

Right Ascension of the Ascending Node Argument of the Perigee Drag Ballistic Coefficient

°

Rad
Rad

AR LS A MW . : L
-1 -2 ° ° ..,‘ . . . 75 . o . :_. * . .o . ..
M s . . -
. LN . -~ . R
- R PR S S W . e
<. 0) e odey 2 et ol DA %,
T o e <. a2, 2, % 2
-3 . o .. 2o, e oo LN PN Ty M'

6.4 6.5 6.6 6.7 6.8 6.9 6.4 6.5 6.6 6.7 6.8 6.9 6.4 6.5 6.6 6.7 6.8 6.9
nds nds nds

(d) RAAN (e) Argument of the Perigee (f) Drag Ballistic Coefficient

Figure 4.1: Variables for satellite ID 0903 - It is possible to see the periodicity in all of
these variables (except for the drag ballistic coefficient) which show that a specific pattern
for most of them is repeated over time.

but it shows that it is constantly “wobbling” between those two values. Looking at the
drag values, it is possible to see that the majority is concentrated around 20 kg/m? with a
couple of outliers reaching 200 kg/m?. These high drag values might be strange to think
about considering the satellites used on this dataset by Planet are rather small, having an
approximate parallelepiped shape with dimensions of around 10x10x30 cm. However,
since the attitude of the satellite is not available, the surface area considered changes
drastically depending on where it is pointed to. For example, the surface ratio between
being with the solar panels open in the movement direction compared to being sideways
can be at least 8 times more, making drag reach those high values.

4.3 Variable Distributions

After verifying the evolution of the variables over time, we checked if any of them fol-
lowed a known analytic distribution. This is useful because a distribution of this form
is characterized by a mathematical function [15], the cumulative distribution function
(CDEF), which represents a simple way of describing how the data is distributed, leaving
out unneeded details. The CDF of a random variable X is described by Fx(x) = P(X < x)
which represents the probability of X having a smaller or equal value to x. Firstly, to
check if a variable follows an exponential distribution, one can do a statistical test to

verify it. One of the most used for checking if one is in the presence of an exponential

24

4.4. CORRELATION

distribution is the Lillerfors test [38]. The null hypothesis considers the data comes from
an exponential distribution. If the null hypothesis is rejected, it is not possible to verify
that a variable follows an exponential distribution.

After repeating this test for all of the variables, none of them followed an exponential
distribution since the null hypothesis was rejected for all of them. What was done was to
see if they followed it approximately. This can be done by plotting the complementary
CDF with the y-axis in a logarithmic scale and checking if the result is a straight line. This
works because, since the CDF of an exponential distribution is given by CDF(x) = 1 —e ¥

which means its complementary is
py=1-CDF(x)oy=1-(1-e M) oyp=e™
s logy =-Ax

which means that on a log-y scale, CCDF is a straight line with its slope equal to —A.
However, when plotting this graph for all of the variables, none of them follow a straight
line which represents that they can not be described with an exponential distribution (I).

The other probability distribution we tried to verify if any variables followed it, was
with the normal distribution which is the most commonly used, mainly due to its sim-
plicity and ability to model many different phenomena. There were two ways we did
this. Firstly we tried the more formal shapiro-wilk normality tests on the variables but
unfortunately, none of them proved to be normally distributed. Secondly, to just have a
more informal look at “how normal” the data are, we decided to use a normal probability
plot which on the y-axis has the variable to be tested, and on the x-axis, the standard
deviations from the mean. Having the perfect model line as grey and the data line as blue,
if both of them match between two values of standard deviation, it is possible to say that
they are approximately normal within those standard deviations. However, when testing
it for all the variables, some respected the normality up to 3 *standardDeviations from

the mean but none of them can be said to be normally distributed (II).

4.4 Correlation

One important analysis to do is to check the relationships between variables which can
be done by checking the correlation. One way to do this would be to calculate Pearson’s
Correlation [60] since it is easy to interpret, if this value is either -1 or 1 the variables
are perfectly correlated. The problem is that if the value is 0, even though it is tempting
to say that those variables are not correlated, this cannot be concluded due to Pearson’s
Correlation only measuring linear relationships. The alternative is to simply plot a scatter
plot comparing each of the variables with one another, helping us to see if any variables
are strongly correlated meaning that one can be dropped, reducing the complexity of the
problem we are dealing with.

Analyzing the existing correlations III.1, it looks like almost all of the variables are
correlated in some way or another, although the relationships are mostly non-linear. Some

25

CHAPTER 4. EXPLORATORY DATA ANALYSIS

0 20 40 60 800 50 100 150 80 100 120 140
KP4 A4 F10.7_0BS

Figure 4.2: Correlation Plot - External variables for satellite ID: 0903. These external
variables describe the solar effect and might add more information that explain some
phenomena that the orbital elements cannot.

variables were expected to be correlated, for example, the velocity in the Z axis with the
position in the same axis but there were some others not as obvious, for example, the

ballistic drag coefficient with the semi-major axis.

4.5 Additional External Data

When analyzing the data, since in the previous analysis drag was not strongly correlated
with any other variable, we tried to aggregate extra information to the dataset that could
help explain either drag or other variables better. The three extra variables introduced

were A, K, and Fyg 7.

Ky

indicator of disturbances in the earth’s magnetic field. However, K, is measured in a

is used to characterize the magnitude of geomagnetic storms and serves as an

logarithmic scale and is not linear with the fluctuations of what it is measuring. Because
of this non-linear relationship taking the average of multiple K-indices is not meaningful.
Due to this, every 3-hour K-value is converted into a linear scale which is the A, repre-
senting an average measure of the global scale of disturbance of the Earth’s magnetic field.
Fy¢.7 is the solar radio flux at 10.7cm (2800 MHz) which is an excellent indicator of solar
activity.

These three new variables introduced that describe the solar perturbance can possibly
describe the dataset a bit better and may explain certain outlier values. However, when
looking at the correlations between these new variables and the rest of them, there was no
visible correlation. There was a relationship between A, and K, that looks exponential
which matches up with the meaning of the variables since one of them is in a logarithmic
scale and the other is in a linear scale. Both of these variables do not seem to be correlated

with any other variable. Fy 7 is not correlated with any variable (Figure 4.2).

26

4.6. DATA FIDELITY

4.6 Data Fidelity

One problem referred at the beginning of this chapter was the possibility of having very
little data to properly make predictions in the future. This is due to only having a single
state vector per satellite per day. Considering satellites in LEO can take only between 90
minutes and 2 hours to complete a full orbit [57], it is easy to understand that having
only a single measurement per day is not enough to accurately describe its orbit. Looking
at the first 50 state vectors of a single satellite (corresponding to 50 days), it is possible to

see its orbit drifting.

Bl

am [] 6M
° o*
ang
M
o ® o
@ [] ® ™
: 0 [[]
® ® 20
S @ ! M
% o ®
i .. J A
| o
4t
1o""'\ .‘ . 2M o 4{:"“
N] w ool b 2
i R o —2ZM Y 2, ¢ Y
"" @ o ~4M X EL i
FooF s ™ I s
¥ ! ia b Sy
a) Data from 50 days b) Data from 2 years
Y y

Figure 4.3: Evolution of the position of Satellite 0903 over time

Due to the scarcity of measurements from real-world data per trajectory, we employed
a realistic high-fidelity propagator used in Neuraspace that accounts for various exoge-
nous perturbations, including solar radiation pressure, atmosphere density models, and
gravity variations due to the oblateness of the Earth. Additionally, we considered inter-
nal information specific to each satellite, such as its reference area, drag coefficient, and
mass. Utilizing this propagator, we generated a more finely-grained dataset, significantly
increasing the number of measurements available for analysis. This data augmentation
process enables the application of the SINDy methodology.

The resultant dataset consists of state vectors, each representing the complete state of
a satellite. These vectors encompass both the position and velocity values along each axis,
providing a comprehensive depiction of the motion of the satellite in three-dimensional
space. With this enriched dataset, we can explore the capabilities of SINDy in uncovering

the underlying governing equations of the dynamics of the satellite system.

27

5

PRELIMINARY WORK

What is done in this Chapter is in the field of discovering partial differential equations
from data using SINDy, which was explained in Chapter 3. Considering that SINDy
can find PDEs that explain the data that it was fitted with and PINNs will need PDEs to
incorporate the said physics laws in the predictions made. Having this in mind, learning
how to take the best advantage of SINDy and analyzing its performance is a crucial step

before constructing any kind of PINN.

5.1 Candidate Nonlinear Functions

SINDy requires the appropriate choice of a coordinate system and function basis to
capture the sparse dynamics of the system accurately. However, such steps can be chal-
lenging and nontrivial [65]. In this context, domain-specific knowledge of the underlying
physics can be priceless. By leveraging physics knowledge, one can use the power of data
to guide the selection of appropriate coordinates and simplify the dynamical model of
the system. This interplay between domain expertise and data-driven analysis facilitates
the discovery of meaningful and interpretable system behavior models.

In this work, two different function bases were considered to explore the modeling
of the nonlinear dynamics of the system. The first function basis is grounded on the
underlying physics of the problem, aiming to capture the intrinsic relationships and
principles governing the behavior of the system. The second function basis consists of
polynomial functions, which are more general and widely applicable due to the flexibility
of polynomials, enabling the exploration of more straightforward and more interpretable
representations of the data.

5.1.1 Domain-Driven Custom Functions

We begin by utilizing a custom functions library, with the primary objective of assessing
the capability of SINDy to identify the correct terms among the available options for
constructing the equations. As mentioned in Chapter 4, the data consists of a time series
of state vectors containing the positions and velocities of a given object. Thus, we seek to

28

5.2. RESULTS

find the first-order PDEs of the underlying system. For a given state vector,
w= [x Yz X P Z],
to find equations that accurately describe
=[x y z & § 2| (5.1)

From the orbital motion equations [12], we can approximate w by neglecting the

contribution of external forces. Thus, w is given by

u'/z[x Y Z yx Yy yz] (5.2)

where y = (and p is the standard gravitational parameter of the Earth. In this

sense, the proposed domain-driven custom library contains the terms in (5.2), and the
main purpose of this trial is to study how can SINDy recover the well-known parameters
for the standard solution of orbital motion. Writing this in vectorial form we get

d’x d*y d’z U
[W’ W’W]: -——[x,9,2] (5.3)

3
(x2+p%+22)2

By Equation 5.3, we can build a library made out of the following terms

X Y z
X, ’ 4
{ (x2 + 92 +22)32" (x2 + p2 + 22)3/2 (x2+y2+22)3/2}

5.1.2 Polynomial Functions

As mentioned, a polynomial library was also considered. The goal of incorporating poly-
nomial functions is to explore a more general and flexible approach to represent the
observed state vectors. By considering polynomial terms of varying degrees, we aim to
assess the possibility of capturing the nonlinear system dynamics using simpler and more
interpretable terms without relying on domain-specific knowledge. In this work, terms
up to degree four were considered, which allow for capturing a wide range of nonlinear
relationships and interactions within the system. By limiting the degree to four, we aim
for a practical balance, enabling us to capture important nonlinearities while maintaining

a manageable number of terms in the model.

5.2 Results

To assess the performance of our approach, i.e., the effectiveness of the equations obtained
through the application of SINDy, such equations were used to propagate the data over
time. The resulting data points were then compared to the observed trajectory of the
satellite. This comparative analysis enabled us to evaluate the predictive accuracy of the

methodology and its reliability.

29

CHAPTER 5. PRELIMINARY WORK

5.2.1 Choice of the SINDy Optimizer

One of the key decisions when applying SINDy is the choice of the model optimizer [62].
However, after choosing one, it is still highly dependent on multiple factors revolving
around the data fed (if they are standardized or not, if multiple trajectories are used, if
the data contain drag or not, and finally if they are the result of custom functions or
polynomial terms), the differentiation method chosen and even with everything fixed,
there is still some variance on the identified equations comparing multiple runs [62, 28].
Several optimization methods are used in the literature [29].

However, we have decided to proceed with the Forward Regression Orthogonal Least-
Squares (FROLS) [54] since it offers advantages in terms of interpretability, computational
efficiency, and robustness to noise. FROLS tries to solve the following optimization
problem:

min [t~ Av]Z + allol3 + bllell, (5.4)

where b = kN, N is the condition number of the matrix ® which corresponds to the
function library whose columns represent the set of basis functions and ||ul|y = Zi\il |1,,°
corresponding to the LO norm that is the number of non-zero entries in u. This optimizer
has two tunable parameters, a and k. «a represents the optional L2 regularization on
the weight vector to enforce smaller coefficients and « is also an optional parameter that
if used, computes the mean squared error with an extra LO regularization term with

strength equal to b above-mentioned.

5.2.2 First order PDE
5.2.2.1 Custom Library

The goal with this library was to see if SINDy managed to find the correct terms out of the
available ones to reconstruct the correct equations and if it could find a specific coefficient.
For numerical stability purposes, we used the data in kilometer units. After applying
SINDy to the data obtained from propagating the initial state vector over three hours, the
solution, as represented in (5.2), was accurately determined. Notably, the gravitational
parameter was correctly identified up to the ninth decimal place, indicating the precision

achieved in the estimation process.
RealValue = 3.986004418 x 10" *m3s~>

PredictedValue = 3.986004412 x 10 4m3s~2

When looking at the errors attained for a span of four hours as seen in 5.1, it is pos-
sible to see that the errors are low, having mean values for the positions as -0.0022 km, -
0.0033 km and 0.025 km for each axis respectively and for the velocities ~5.63x107%,—4.66x%
1076 and —4.38x107° for each axis. However, one has to keep in mind that here we have no
external non-conservative forces acting on the satellite that would make the predictions

harder. This experiment has the objective of finding the standard gravitational parameter

30

5.2. RESULTS

Difference between training data and model simulation (Position) Difference between training data and model simulation (Velocity) Training data vs. model simulation

—— model error — training data
0.0000 model fit
—— model error o Sarth
~0.0001

-0.1
0 o5 10 15 20 25 30 35 a0 00 05 10 15 20 25 30 35 40
le-5

0.05
—— model error
_0.05 —— model error

00 05 10 s 20 25 30 35 a0 00 05 10 15 20 25 30 35 40 6000

€ 0.19 — model error —— model error 00
~ 0.0000
500
5 , 0 &
3 ~0.0001 oo
=)

0
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 * i 129G
time [hour] time [hour] ™)

error x [km]
°
°

error vx [km/s]

error y [km]
°
3
8

G oo ow

error vy [km/s]

°
3
8
2

error vz [km/s]

40006000

(a) Errors in Positions (b) Errors in Velocities (c) Orbit Dynamics

Figure 5.1: Errors obtained when comparing the true values with the ones obtained using
the custom library.

of the Earth from data. It is also important to state that we are specifically saying which
terms will have to be present in the identified PDEs which eases the difficulty of the
predictions by the model.

These are the equations known to describe an orbit for centuries which is interesting
in being able to find them from only measurements. However, one question arises. Is it

possible to reproduce an orbit with much simpler equations?

5.2.3 Polynomial Library

An orbit can be represented by the custom functions as above-mentioned. However,
we are specifically saying what terms have to be present in the identified PDEs. An
alternative is to use a library simply made out of polynomial terms up to a certain degree
(in this example, up to the fourth degree) and check if the PDEs found can also encode
the physical laws that determine an orbit. This has the advantage of being faster to run

since polynomials are really simple and nicely fit the data.

SINDy Relative Error vs. Polynomial Degree SINDy Training Time vs. Polynomial Degree
—e— Relative Error —8— Training Time
[0 Mean + Std 20000 1 Training Time + Std

15000

10000 1

Relative Error
-
«
Training Time (s)

5000

0.54
—5000 +

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 2 3 4 5 6 7

Degree of Polynomial Library Degree of Polynomial Library
(a) Relative Errors (b) Training Times

Figure 5.2: Relative errors across all axes and the correspondent training times over using
function libraries up to different degrees

In order to understand the impact of different degrees in polynomial libraries with

31

CHAPTER 5. PRELIMINARY WORK

SINDy, we analyzed the training times, revealing an interesting observation. As it is seen
in Figure 5.2(b), it is possible to see an increase in training times for SINDy when em-
ploying polynomial libraries of diverse degrees (ranging from 3 to 7) with an exponential
behavior. This trend is attributed to the expanding size of the function library within
SINDy which needs to comprehend all of the combinations between the terms.

In addition, a visual representation displays the average relative errors across all axes
in Figure 5.2(a), which enables us to analyze the trade-off between the size of the library
and its predictive efficacy. By doing so, we decided that using a library up to degree 4
would be ideal choice. This decision strikes a balance between manageable training times
and achieving a satisfactory level of relative errors. If we decided to choose a library with
terms up to a higher degree that would result in lower training errors, for example up to
the 6th degree, we would have a higher training time but more importantly, we would be
overfitting to the training data due to the higher polynomial terms.

This analysis emphasizes the importance of correctly defining the problem and using
the correct set of tools in order to solve it, in this case being which function library to use.
Such decisions will influence the training process duration and predictive accuracy. With
these observations in mind, we move forward, building on the lessons gained from this
initial exploration.

Using the polynomial library, SINDy could identify the first-order PDEs for the posi-
tions correctly but did not manage to find any equations for the PDEs for the velocities.

Xcalculated = €1X Xcalculated = 0.00
Vcalculated = €29 Yealculated = 0.00
Zealculated = €32 Zcalculated = 0.00

where ¢; = ¢y =c3 = 1.00.

Upon examining the range of values for each variable, we observed significant differ-
ences in orders of magnitude. This discrepancy posed a challenge for the optimization
step of SINDy, which aims to identify the correct PDEs that best fits the data. To address
this issue, we considered standardizing the data to alleviate the impact of varying scales.

By fitting the model with standardized data, we achieved a straightforward polyno-
mial PDEs that accurately described the orbit:

Xcalculated = €1X Xcalculated = €4X
ycalculated = C2y pcalculated =CsY
Zcalculated = €32 Zcalculated = €62

where ¢; =¢; =¢3 =0.001 and ¢4 = ¢5 = ¢ = —0.001.
When training the model with one orbit and simulating with it, the resultant errors
on the positions reached a magnitude of around 10 km on the worst performing axis (i.e.,

32

5.2. RESULTS

the x-axis). On the velocities, the worst obtained error was approximately 0.01 kms~! as

seen in Figure 5.3.

o Earth

T o~ E 0.01 — training data
= — model = 000 "
o — model error
0.01

errory [km] error x
|
booow
3|y
3 3
& &
2 2
I E
eror vy [km/s] error vx
S o o
s 8 §
2 8 8
3
2

z[km]
°
3
2
&
o
3
vz [km/s]
b oo
5 5 8
g 8 8
& 8 &
Cz
g
@
g
3
IS
8
8
2
g
g

-600,
%000 o

00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
* Ly 2%%000 —-6000
time [hour] time [hour]] 6000

(a) Errors in Positions (b) Errors in Velocities (c) Orbit Dynamics

Figure 5.3: Plots for the errors on the positions and the velocities and the resultant orbit
learning with only one trajectory

In our investigation, we also explored the utilization of pre-computed derivatives
in conjunction with SINDy. The idea was to supply the model with exact derivatives
of the data points as an argument during the fitting process, referred to as using the
x argument. We pre-calculated the time derivatives based on the known differential
equations governing the data, creating a matrix of these derivatives. However, upon
careful evaluation, we observed that this approach yielded suboptimal results compared
to not using them, as it was done hitherto. Despite the initial appeal of mitigating noise
amplification, the simulated orbit generated using pre-computed derivatives did not align
with the expected trajectory. As a result, we have decided not to include this alternative

approach in our final analysis, as it did not yield desirable outcomes.

5.2.4 Multiple Trajectories

Another approach tested was learning from multiple satellite trajectories which suppos-
edly would help the model have more data with a more complete spatial distribution. To
do this, we selected the data from all the satellites and, for each one (for each ID), we in-
tegrated the differential equation 5.3 so that we could get a dataset with no measurement
noise (over a span of 3 hours). This resulted in a list with a length equal to the number
of different satellites, where each index is a matrix representing the simulated dataset for
that satellite. Along with this list of orbits, there is another list with the same length but
with the corresponding times for each state vector of each satellite. Using this approach,
we were getting worse results than only using one orbit, the errors were increasing, and
the resulting orbit did not follow the correct trajectory. We found this counter-intuitive
since learning with more data gave a worse performance.

To understand why adding more data to train the model resulted in worse predictions
than only training with one orbit, we hypothesized that the problem could be that the
orbits used were too similar and could be acting as noise rather than extra useful data.

33

CHAPTER 5. PRELIMINARY WORK

Consequently, instead of using each initial state propagated, the orbits were created
by varying their inclinations, eccentricities, and altitudes to get a representative dataset
of different trajectories around LEO as stated in 4.6. After generating this dataset and
training the model with it, we applied it to see if it could accurately represent it given
the initial state of an orbit. We created a different dataset to have more representative
orbits with varied orbital elements as a way of us controlling what was being used for
training. The orbits created had combinations of inclinations ranging from 0° to 180°
with 15° intervals, altitudes from 200 km up to 1200 km with 200 km intervals, and three
eccentricity values: 0.01, 0.02, and 0.03.

When simulating the model with the same orbit used for the single orbit test but now
training it with the multiple orbits aforementioned, the results improved drastically as
seen in figure 5.4. This proves the hypothesis of the extra data not being representative.
Using multiple orbits, it was possible to decrease the error on the positions on the worst
performing axis to only around 0.5 km and for the velocities as low as 0.001 kms~!. This is
informative and proves beyond a reasonable doubt that learning with more representative

data is better than with less data.

0.0005 4 — model error — training data
model fit
5 00000 o Earth
5 —0.0005
£ 0000251 — model error
000000 ——0_—
B
5 -0.00025
3
0.001 —— model error 6000
N 0000 %
5 _ -600 0 &
g o001 %300, 10, 2000

]
00 o5 1o 15 20 25 30 35 4o 0o 05 1o 15 20 25 30 35 40 2000
Xy g
time [hour] time [hour] k)~ 4000 05 —6000

error x [km]
s s
[EI
3
3
2
=
2
3
Tk

error y [km]
b oo
M-
8
3
3
8
o
)
3
y [km/s]

ermor z [km]
b e o
58¢%

3

2

2

gl

e

3

Tkms]

(a) Errors in Positions (b) Errors in Velocities (c) Orbit Dynamics

Figure 5.4: Plots for the errors on the positions and the velocities and the resultant orbit
learning with multiple trajectories

5.3 Data with full dynamics

Constructing a simulated dataset makes it possible to introduce realistic full dynamics
related to drag and interactions with other celestial objects and see if SINDy manages
to find the extra terms related to the added force. Drag corresponds to an extra term
in the equations that define the derivative of the velocities which is subtracted from the

acceleration value and is given by

- 1 A -
Adrag = EPCDE”ﬂh}

The dataset used corresponds to the same orbits with realistic values for p resulting
in realistic drag values and a more complex gravity modeling. It can be seen as a high-
fidelity dataset with only differences from a real dataset due to noisy measurements.

34

5.3. DATA WITH FULL DYNAMICS

5.3.1 Custom Library

Firstly, for testing, if it could find the exact terms for the equation that are known to
represent drag, three extra functions had to be added to the library corresponding to
the drag terms for each axis. Unfortunately, even with the presence of drag, making
the satellite fall towards the earth at a rapid pace, the PDEs found, even though having
extra terms compared to having no drag, the resulting orbit had the same contour as
without drag which means the equations could not capture this effect. When repeating the
same process for standardized data, a couple of residual terms appear on the equations,
however, the orbit looks the same as without drag.

5.3.2 Polynomial Library

Testing if the added polynomial terms could capture enhanced dynamics, repeating the
process by training the model with only one orbit and simulating with a different one, the
results were obviously worse than simpler dynamics. With standardized data, the orbit
found spirals slightly into itself as seen in figure 5.5 which might be an amplification of
what really happens due to the decrease in the altitude of the satellite.

2000

© —2000

500 { — model error
0
-500

. 2000

[km]
°
3
g
vx [km/s]
.
Lo
3
H
g
< oy
]
3
g33
EX-E
33
"8
H

errory [km]

y [kmy/s]
°

3

3

g

&

g

g

tkm
°
3
2
z [km/s]
Lo
3
3
2
@
2
3
&
3
3
>
g
8
8

E —600(
§ oo 0% 500

© 2000,

00 05 10 15 20 25 30 35 40 0.0 05 10 15 2.0 25 30 35 4.0 %y uong, 6000

time [hour] time [hour]

(a) Errors in Positions (b) Errors in Velocities (c) Orbit Dynamics

Figure 5.5: Graphics for the errors on the positions and the velocities and the resultant
orbit learning with a single trajectory and full dynamics

5.3.3 Multiple Trajectories

Using standardized data and training the model with the descriptive high-fidelity dataset,
the results were much better. Training with multiple trajectories and simulating with a
different one with an unseen inclination, eccentricity, and altitude, decreased the error
compared to only using a realistic orbit. In this case, it is possible to see the outline of the
orbit in Figure 5.6 follows much more precisely the correct trajectory and does not suffer

from incorrect spiraling.

35

CHAPTER 5. PRELIMINARY WORK

[km]
|
5 5
8 o 8
3
&
3
error vx [km/s]
o o
s
3
I3
3

y [km]
|
[
g o8

3
3
&
a
3

y [kmy/s]

o o

s &

3
&
3

z 0
@
0.2 — model error
3
8

00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
time [hour] time [hour]

e
&
3
g8 o
3
2
I
o
El
[kmys]
°
g

error z [km]

(a) Errors in Positions (b) Errors in Velocities (c) Orbit Dynamics

Figure 5.6: Plots for the errors on the positions and the velocities and the resultant orbit
learning with multiple trajectories and full dynamics.

5.4 Second order PDEs

Until now what was being done was calculating the first-order PDEs since it is what
SINDy was made to do. But is it possible to find the second-order PDEs for the data? By
calculating x (which was already calculated to be used as an argument for the first-order
case) and fitting SINDy with the first three columns of the x matrix (corresponding to the
first derivatives of the positions, the velocities), we get PDEs for the velocities. Simulating
with these equations what we get is a matrix consisting of the velocities simulated along
the timesteps desired. Currently, this section is still work-in-progress and might not be
used afterward, thus it was not thoroughly experimented with. At this point, to compare
if what was done is correct, if we integrate this matrix, this will give us another matrix
consisting of the positions. To do this, the main idea is that to calculate a new position
in a timestep we have to add the current position to the displacement made over that
timestep. To calculate this displacement we have that u ~ %, and Au = At

Given that we have the initial position p(, the matrix can be calculated the following

way and repeat the process until all of the velocity matrix has been iterated.

p1 = po +vo(t; —to)

p2=p1+vi(ta—t;)

5.4.1 Polynomial Functions

Applying what has just been said to the polynomial functions library with the data stan-
dardized and integrating the simulated velocities to get the positions resulted in a nicely

defined orbit with its equations containing high coefficients

X = C1X+C2}}+C3Z'
V=C4X+C50+C62
Z= C7J€+C8}>+(392.

36

5.5. NOISE ANALYSIS: ROBUSTNESS TO HEAVY-TAILED NOISE

where ¢; = —75252.637, 5 = 75923.605, c5 = 23382.477, ¢y = 55410237.279, c5 = —55904286.630,
e = —17217053.022, c; = —341023.007, cg = 344063.641 and ¢y = 105962.571.

For the standardized data using the pre-computed derivatives, it was not possible to
find equations that described the correct orbit.

5.4.2 Multiple Trajectories

With non-standardized data, both with the pre-calculated derivatives and without them,
it is not possible to find equations for an orbit with any optimizer. Using standardized
data it also was not possible to get any good results.

5.5 Noise Analysis: Robustness to heavy-tailed noise

Table 5.1: Robustness of SINDy to multiple types of noise - Custom Library.

Noise Type Position Velocity

Gaussian Noise 0.1% 1%
Laplacian Noise ~ 0.1% 0.1%
Cauchy Noise 0.001% 0.01%

Table 5.2: Robustness of SINDy to multiple types of noise - Polynomial Library.

Noise Type Position Velocity
Gaussian Noise ~ 0.37% 0.79%
Laplacian Noise ~ 0.38% 0.53%

Cauchy Noise 0.01% 0.1%

Robustness of SINDy with Custom and Polynomial Library to Noise

1.0 A B Custom Library - Positions
B Custom Library - Velocities
mEmm Polynomial Library - Positions
0.8 I Polynomial Library - Velocities

0.6 1

0.4 1

Maximum Noise Level (%)

0.2

0.0 -

Gaussian Laplacian Cauchy
Noise Type

Figure 5.7: Robustness of SINDy to Different Types of Noise

37

CHAPTER 5. PRELIMINARY WORK

To see how capable SINDy is in discovering PDEs in multiple noise conditions, con-
sidering that its performance excelled in discovering first-order PDEs, we introduced
multiple types of noise to the data and then used SINDy to discover those first-order
equations to check how robust it is, given a noisy input using the custom library function
and the polynomial library whose results are shown respectively in Table 5.1 and 5.2.
There were three types of noise we tested SINDy with due to their intrinsic characteris-
tics. The first one we tested with was the Gaussian noise. One of the biggest advantages
is that when dealing with a lot of data, it tends to respect the central limit theorem that
the Gaussian distribution describes. Having thin tails and the majority of its probability
mass around the mean also represents having a lower probability of generating outliers.
Afterward, we applied two other different types of noise: Laplacian and Cauchy. The
distributions that describe these two types of noise are heavy-tailed, so they are usually
used for modeling outliers as they appear in the distribution areas further away from the
mean. Laplacian noise can be considered two exponential distributions pointy around the
mean whereas the Cauchy distribution has even heavier tails to the point where a mean
value does not even parameterize it. One important step to remember is that the noise
may have a different effect depending on which variables are affected, whether the noise
is present in the positions or the velocities. We calculated the norm of a position vector
and applied the different types of noise with a standard deviation varying from 0 to 10%
of the norm of that vector and did the same for the velocities. The noise robustness as-
sociated with both the custom and polynomial libraries, encompassing the three distinct
noise types and their impact on the positions and velocities, are depicted in Figure 5.7.

Using the custom library, we utilized SINDy to discover first-order equations in the
presence of noise. For Gaussian noise, if there is only noise on the velocity, SINDy
supports up to 1% noise before yielding non-explanatory equations for the system. On
the other hand, if there is only noise on the position, SINDy supports up to 0.1% of noise.
Regarding 1% noise on the velocity, SINDy does not support any noise on the position.
However, with 0.1% noise on the velocity, SINDy supports as low as 107% noise on the
position.

Regarding Laplacian noise, SINDy demonstrates similar robustness in handling noise
in the positions, but this ability decreases with velocities. If there is only noise on the
velocities, SINDy allows up to 0.1% noise compared to the 1% tolerance with Gaussian
noise. Similarly, if there is only noise on the positions, SINDy allows up to 0.1% noise,
consistent with the Gaussian noise scenario.

Concerning Cauchy noise, it has two parameters, loc which specifies where the peak
of the distribution will be on the X axis (which is 0 by default) and a scale parameter
represents half the width of the PDF at half the maximum height. Fixing the position
parameter and varying the scaling factor, having only noise on the positions, SINDy
supports noise up to 0.001% of the position vector norm. For velocities, it supports noise
up to 0.01% of the norm of a velocity vector, which is 1 order of magnitude less.

Considering the polynomial library, which has shown promising results, evaluating

38

5.5. NOISE ANALYSIS: ROBUSTNESS TO HEAVY-TAILED NOISE

its performance in the presence of noise is crucial. The analysis in this section focuses
on standardized data. For Gaussian noise, if there is only noise on the positions, SINDy
supports a standard deviation up to 0.37% of the norm of the first position vector, cor-
responding to a noise level of up to 26 km in positions, which is reasonable. Regarding
velocities, SINDy supports up to 0.79%, equivalent to 0.06 km/s. When the standard de-
viation for the positions is 26 km, the same percentage of noise is supported for velocities
(0.79%).

Results for Laplacian noise are similar, with support for up to 27 km noise in positions
and up to 0.04 km/s noise in velocities when noise is present only in the respective
variables. In the case of maximum supported position noise (27 km), the supported noise
in velocities remains at 0.04 km/s.

Lastly, for Cauchy noise, SINDy supports up to 0.01% of the norm of the positions
and 0.1% of the norm of the velocities.

Comparing the three types of noise, it is evident that SINDy demonstrates greater
robustness to noise on the velocities than on the positions. Additionally, it is important to
note that when using the polynomial library with non-standardized data, SINDy struggles
to identify any PDEs for the velocities, regardless of the introduced noise level. This
emphasizes the importance of standardizing the data before applying SINDy to achieve

more reliable results.

39

6

PrREDICTIVE METHODS FOR STATE VECTORS

Our main objective is to improve the accuracy of predicting satellite positions for the
future. We identified that the drag force, specifically the atmosphere density variable,
contributes to the stochasticity in these predictions. To address this, we will first explore
some methodologies, focusing on predicting future positions, as it is at its core a time-
series forecasting problem. Subsequently, we will extend our investigation to predict the
atmosphere density.

For these methods, we examined various techniques. We started by using the equa-
tions discovered with SINDy and propagated them to predict future positions, as ex-
plained earlier. Additionally, we briefly experimented with LSTM units, a type of recur-
rent neural network suited for time-series data [10, 19, 78]. We also tested feed-forward
neural networks and a Physically-informed Neural Network (PINN) with multiple archi-
tectures in the data-driven part for performance comparison.

Through these baseline methodologies, we aim to evaluate their effectiveness in ad-
dressing the challenges posed by the drag force and atmosphere density variable. By
comparing their results, we seek to identify their strengths and weaknesses in reducing
predictive errors for satellite position forecasts.

In the subsequent sections, we will provide an analysis of the outcomes from each
methodology. By understanding their performances in predicting future positions and
velocities, we aim to identify promising approaches for further improvement and advance
data-driven modeling for satellite trajectory prediction. This exploration of baseline
methods will enrich our understanding and contribute to more accurate and reliable

predictive models for satellite motion.

6.1 SINDy

Our analysis in the previous chapter showed us that when training the model with multi-
ple orbits and employing the uncovered equations we managed to get errors that exhib-
ited a desirable behavior, as they neither followed an exponential trend nor significantly
deviated from the sinusoidal waves characterizing the motion along each axis. This

40

6.2. LSTM NETWORK

encouraging outcome underscored the potential of the approach in predicting satellite
positions for the future. However, when attempting to uncover equations with SINDy,
we encountered one requirement: the data fed to the model had to be precise, with little
noise. If the data had any noise beyond the tolerable levels analyzed in the noise analysis
of the previous chapter (see 5.5), the subsequent propagation of equations would result
in orbits that no longer conformed to the expected behavior. Instead, they might exhibit
peculiar and undesirable characteristics, such as spiraling upwards or downwards into
infinity.

This sensitivity to data precision in the SINDy approach highlighted a crucial limi-
tation and demonstrated the importance of acquiring high-quality, noise-free measure-
ments for achieving accurate predictions. The requirement for precise data becomes
particularly relevant in scenarios where noise and uncertainties are prevalent, such as
in real-world satellite tracking and trajectory estimation. Therefore, in practice, careful
consideration and measures for data acquisition and preprocessing become imperative to

ensure the success and reliability of the SINDy methodology.

6.2 LSTM Network

In the context of SINDy, as noise in the data inevitably increases, it becomes apparent
that SINDy-derived equations may eventually deviate from describing any form of orbit.
In contrast, when utilizing models with a data fidelity step, although the predictions
might not be entirely accurate, they retain an essential characteristic: the predictions
will still correspond to trajectories that resemble orbits, rather than deviating into non-
orbital behaviors. This distinction shows the importance of incorporating data fidelity
steps in maintaining the fundamental behavior of the predictions when dealing with the
complexities introduced by noise in the input data.

Regarding these methods and subsequent architectures, the data input is structured
in windows rather than the conventional dataframe format. This adaptation stems from
the inherent nature of our task, which is time-series prediction. This is also in order to
turn this forecasting into a supervised learning problem. Dealing with time-series data
involving multiple variables, our objective is to predict these variables into the future.
The windowed data approach enables prediction of the subsequent F timesteps based on
the prior P timesteps. Each window incorporates crucial parameters: the input width
(considering preceding timesteps), the label width (predicting future timesteps), and the
shift (determining window overlap).

Regarding the LSTM network, it exhibited several limitations that warranted brief
exploration. Among these is the extensive training time, averaging around 20 minutes
per epoch even for moderate-sized datasets. In terms of performance, examining the error
graph for a variable showed errors surpassing 500 km without additional noise, which is
much higher than with SINDy.

41

CHAPTER 6. PREDICTIVE METHODS FOR STATE VECTORS

However, the primary drawback of the LSTM network surfaced when used to predict
the following timestep based on the prior 200 timesteps, this being very limiting. Errors in
this scenario were considerable, revealing the limited capability of the model. Moreover,
when the LSTM network was used for recursive prediction as done in [77], aiming to
forecast multiple future timesteps, errors increased exponentially. This rendered the
model impractical for generating any kind of accurate predictions in this problem.

In the upcoming sections, we will explore other network architectures and methodolo-
gies, focusing on their comparative performances. Through systematic evaluation, we aim
to uncover approaches better suited to overcoming noise and uncertainties, ultimately

advancing satellite trajectory prediction techniques.

6.3 Feed Forward Network

For the feed forward networks we experimented with three possible architectures.
First Architecture:

* Input Layer used to select the input steps from the input tensor and reshape it to

[Batch Size, Input steps, Features].
* 3 Dense layers with 32, 16 and 32 neurons and LeakyReLU as an activation function.
* Flattening layer to make it [Batch Size, Output steps*Features]

* Reshaping layer to [Batch Size, Output Steps, Features] so that we restore the multi-
dimensional structure and have the predicted features for the desired number of

output steps.
Second Architecture:

* Input Layer used to select the input steps from the input tensor and reshape it to

[Batch Size, Input steps, Features].
* 3 Dense layers with 32, 8 and 32 neurons and LeakyReLU as an activation function.
* Flattening layer to make it [Batch Size, Output steps*Features]

* Reshaping layer to [Batch Size, Output Steps, Features] so that we restore the multi-
dimensional structure and have the predicted features for the desired number of

output steps.
Third Architecture:

* Input Layer used to select the input steps from the input tensor and reshape it to

[Batch Size, Input steps, Features].

* 3 Dense layers with 16, 8 and 16 neurons and LeakyReLU as an activation function.

42

6.3. FEED FORWARD NETWORK

* Flattening layer to make it [Batch Size, Output steps*Features]

* Reshaping layer to [Batch Size, Output Steps, Features] so that we restore the multi-
dimensional structure and have the predicted features for the desired number of

output steps.

Overall, these architectures take as input a time series sequence of shape [Batch Size,
Input Steps, Features] and apply three dense layers with LeakyReLU activation functions
to extract higher-level representations. The output is reshaped to match the desired
output shape of [Batch Size, Output Steps, Features], representing the predicted future
time steps.

The tests we are going to make are based on how changing the features of the windows

affect the predictions made and the respective errors between the multiple architectures.

6.3.1 Input Width = 1000, Output Width = 30

It is important to note that the time units that define the windows are in minutes. This
means that in this case we are considering the values of the variables from the last 1000
minutes to predict the values for the following 30 minutes.

Firstly, we will look at the training and validation losses over the epochs for the mul-
tiple networks ([32, 16, 32], [32, 8, 32] and [16, 8, 16]) while running 10 trials for each

configuration so that the values are more stable.

Losses - Dense model Losses - Dense model Losses - Dense model

4 10 20 30 40 50 60 4 10 20 30 40 50 60 70 0 10 20 30 a0 50 60
Epochs Epochs Epochs

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.1: Loss Evolution for Different Architectures and 1000 Input Steps

Looking at the losses behaviours over the multiple networks, it is noticeable that on
the least complex network [16, 8, 16], the average validation loss values decrease up to
around epoch 50 and then start to increase due to overfitting as it is seen in Figure 6.1.
When looking at the second network, the validation loss values seem to be lower than on
the least complex network while also having smaller standard deviation values, proving
it has more stability on the training and validation of this model. Finally, looking at the
more complex network, the validation loss values seem to be the lowest ones, reaching
practically zero at one point and not increasing from there onwards. However, there was
one peak on the standard deviation over the 10 trials that turned out to be the highest

recorded standard deviation value.

43

CHAPTER 6. PREDICTIVE METHODS FOR STATE VECTORS

Secondly we will briefly look at the differences between the predicted values and the
real values for each of the axis. As it is possible to see, the mean errors for the positions
in X is 824.81 km for the first network, 341.20 km for the second network and 316.44 km
for the third network. For the positions in Y it is around 272.76 km for the first network,
92.30 km for the second network and 136.30 km for the third network. For the positions
in Z, these around 822.63 km for the first network, 365.09 km for the second network and
397.89 km for the third network. For the velocities in X the error was around 0.82 km/s
for the first network, 0.36 km/s for the second network and 0.38 km/s for the third
network. In Y was around 0.19 km/s for the first network, 0.08 km/s for the second
network and 0.14 km/s for the third network. In Z they were around 0.84 km/s for the
first network, 0.36 km/s for the second network and 0.30 km/s for the third network.

Analyzing the results obtained using an input window of 1000 minutes and out-
putting 30 minutes revealed that the two least complex networks, [16, 8, 16] and [32,
8, 32], yield significantly lower mean errors compared to the same variables on the most
complex network.

The explanation on why the least complex networks provide better results in this spe-
cific problem could be attributed to two possible factors. Firstly, the simplicity of the ar-
chitectures of the networks might be a key factor. In some cases, a more complex network
with a larger number of parameters can lead to overfitting, especially when the dataset
is relatively small which is the case. The simpler network, with its reduced complexity,
is better suited to capture the essential patterns and generalize effectively. Secondly, the
characteristics of the dataset itself could also play a role. Since it is relatively straight-
forward with sinusoidal waves and lacks intricate complex patterns, simpler models like
these can avoid overfitting and perform well without the need for excessive complexity.
These factors emphasize the importance of understanding the dataset and finding the
right balance between model complexity and dataset characteristics to achieve optimal

results.

6.3.2 Input Width = 500, Output Width = 30

In this subsection, we explore the impact of using a smaller input window of 500 minutes
instead of 1000 while predicting the same number of time-steps into the future. The
idea behind this experiment is that reducing the input window size might lead to inferior
results compared to the previous experiment. The expectation is that with a shorter input
window, the model will have access to less historical information, potentially limiting
its capacity to capture long-term dependencies and patterns in the data. As a result,
the predictive performance of the model could be compromised. However, conducting
this experiment allows us to assess the significance of the input window size on the
performance of the model and gain insights into the trade-offs between input window
length and prediction accuracy.

We will now look at the training and validation losses over the epochs for the multiple

44

6.3. FEED FORWARD NETWORK

networks ([32, 16, 32], [32, 8, 32] and [16, 8, 16]).

Losses - Dense model Losses - Dense model Losses - Dense model

0 10 20 30 40 50 60 70 0 10 20 30 4 50 60 70 80 0 10 20 30 40 50
Epochs Epochs Epochs

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.2: Loss Evolution for Different Architectures and 500 Input Steps

Looking at the losses obtained, it is worth noting that the results obtained suggest a
similar trend to that observed in the previous experiment but not quite the same. Con-
cerning the most complex network, after the 60th epoch, it is possible to see the validation
loss increasing representing overfitting which did not happen when the input window
consisted of 1000 steps. This means that when having less data, this kind of network with
more neurons per layer tends to overfit due to being too complex for this specific prob-
lem and the amount of historical data used. Looking at the losses behaviors of the other
two simpler networks, it is important to note that in this case there was no overfitting,
showing that simpler networks work better for when we have less historical data to deal
with.

Looking now at the actual errors relative to the predicted values, the mean errors
attained for the positions in X were 1693.12 km for the first network, 1350.41 km for the
second network and 862.74 km for the third network. For the positions in Y, the errors
were 277.96 km for the first network, 138.15 km for the second network and 60.70 km for
the last network. For the positions in Z the errors were 1312.62 km for the first network,
1012.85 km for the second network and 628.41 km for the third network. Concerning
the velocities, the errors for the X axis were 1.30 km/s for the first network, 1.03 km/s for
the second network and 0.64 km/s for the third network. For the Y axis the errors were
0.41 km/s for the first network, 0.20 km/s for the second network and 0.088 km/s for
the third network. Finally, for the Z axis the errors were 1.68 km/s for the first network,
1.31 km/s for the second network and 0.83 km/s for the last network.

Analyzing the results obtained using an input window of 500 minutes and outputting
30 minutes revealed once again that the least complex networks, [16, 8, 16] and [32, 8,
32], result in lower mean errors. Looking at these errors, it is possible to see that for all
of the variables, the results are better on the least complex one. This could be due to the
fact of having a smaller input window and the model is favoring a simpler architecture
to make better predictions.

Upon comparing the results of the simpler network with the experiment involving
the larger input window, it becomes evident that, in this case, the outcomes were inferior

for almost all variables (apart from the position in Y on the most simple network and the

45

CHAPTER 6. PREDICTIVE METHODS FOR STATE VECTORS

velocity in Y on the second network). This aligns with our initial expectation that reducing
the amount of available past information would lead to poorer predictions compared to
when we have a more comprehensive understanding of the previous data. The premise
holds that having less information about the past restricts the capability of the model to

capture crucial patterns, consequently impacting its predictive accuracy.

6.4 PINN

After investigating the other methods, what was left was to use the technique that we
initially considered which are PINNS.

Concerning its architecture, it differs from a fully connected network in the sense
that here we have one large network consisting of two networks as it is possible to see
in 6.3. The first one corresponds to a typical feed forward that can be tuned to have
whichever width and depth values. The input of this network corresponds to what we
are differentiating in respect to, which is time as well as other historical state variables
we have, which in our case correspond to positions and velocities. The output of this
network correspond to the predicted state vectors consisted of 6 variables for the number
of timesteps we want to forecast. After this first network, its outputs will be inputs for
the second network which correspond to the physical part. This network will act as a
regularizer for the inputs that were fed by minimizing the residuals of the PDEs that

govern the system.

LLW(M\ + Low (P0E) S

Figure 6.3: PINN Diagram

The loss function of this network differs from a typical loss function only consisting
of a data-fidelity term. Here we add a second term concerning of how well the data
respects the equations which in this case corresponds to how well the predicted state
vectors respect the 6 partial differential equations that describe the changes in positions
and velocities over the 3 axes (predicted outputs against the physical equation outputs).

The equations used will be (1.1) which are the same as used previously.

46

6.4. PINN

For the PINN, we will be testing with the same architectures that we used without the

physical part in order to assess which one performs better.

6.4.1 Unbounded Coefficients

One possible approach to the PINNs loss function is to not define any coefficients manu-
ally for each of the losses of the networks, which will result in both the data fidelity term
and the residuals term being considered equally important without any explicit relative
weighting. This approach allows the network to treat both terms on an equal footing
during the optimization process. By not assigning specific weights, the network does not
prioritize one term over the other based on pre-defined criteria.

However, it is important to consider the implications of not assigning manual weights.
Without explicit relative weighting, the behavior of the network may be influenced by
various factors, such as the scale of the loss values or the actual optimization process.
Depending on these factors, the network may implicitly assign different priorities to the

data fidelity and residuals terms, potentially leading to biased or suboptimal results.

6.4.1.1 Input Width = 1000, Output Width = 30

When examining the losses of the networks trained with an input width of 1000 and an
output width of 30, some interesting observations can be made. Firstly, it is apparent that
the behaviors of all three networks are quite similar, with the losses hovering around the
value of V15m? (due to the loss being the MSE added with the residuals). This similarity
suggests that the networks are able to capture the underlying patterns and trends in the
data to a comparable degree.

However, upon closer inspection, it becomes evident that the more complex network,
with its architecture of [32, 16, 32], exhibits higher standard deviation values and appears
to be less stable compared to the two simpler networks. The increased variability in the
loss values implies that the complex network might struggle to consistently converge
to an optimal solution, possibly due to the larger number of parameters and the added
complexity introduced by the deeper layers.

Despite the higher variability, it is worth noting that the complex network still achieves
a comparable overall performance in terms of the loss metric. This suggests that while the
simpler networks may offer a more stable and predictable training process, the complex
network is capable of capturing the underlying dynamics of the problem, albeit with
some fluctuations in its optimization trajectory.

Furthermore, it is important to consider the trade-off between model complexity and
generalization. While the simpler networks may exhibit more stable behavior during
training, they might also have limitations in capturing intricate features and nuances
in the data. The more complex network, although exhibiting higher variability, has the
potential to learn more intricate patterns and generalize better to unseen data, provided

that the variability does not translate into significant overfitting.

47

CHAPTER 6. PREDICTIVE METHODS FOR STATE VECTORS

Validation loss - PINN model Validation loss - PINN model Validation loss - PINN model

40 —— Average Validation loss — Average Validation loss —— Average Validation loss
Standard Deviation 30 Standard Deviation Standard Deviation

4 220 2
§ k| Su1s
20
15 150
15
125

0 10 20 30 40 50 60 70 0 10 20 30 40 0 10 20 30 40 50
Epochs Epochs. Epochs

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.4: PINN - Loss Evolution for Different Architectures and 1000 Input Steps

8000 — Predictions — Predictions 10000
Labels 8000 Labels
8000
6000 6000
6000

4000 4000
4000

x [km]
x [km]
x [km]

2000 2000 2000

~2000 . ~2000 -2000
\ ~4000
4000 ~4000

0 H 10 15 20 25 30 o H 10 15 20 25 30 0 H 10 15 20 2 30
Time [min] Time [min] Time [min]

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

°

Figure 6.5: PINN - Predictions (x) for Different Architectures and 1000 Input Steps

—rr e
\ Lobels , Conels

—

7

xdot [km/s]
xdot [km/s]
xdot [km/s]

!
[R S N N SRR
- T S

[T A R
O T S T S

[H 10 15 20 25 30 o H 10 15 20 25 30 0 H 10 15 20 2 30
Time [min] ‘Time [min] ‘Time [min]

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture
Figure 6.6: PINN - Predictions x for Different Architectures and 1000 Input Steps

Let us now delve into the actual predictions made by the networks and assess their

performance. To illustrate the results, we will focus on the predictions of positions and

velocities in the X dimension. This choice allows us to examine the performance of the

network in capturing two different variables that are inherently in different scales, pro-

viding valuable insights into its aptness to handle diverse aspects of the problem. By

visualizing the predictions, we gain a clearer understanding of how well the networks

capture the underlying dynamics of the system. For the positions in X, we can observe

whether the networks accurately predict the trajectory of the object or if there are signif-

icant deviations from the ground truth. Likewise, for the velocities in X, we can assess

how effectively the networks capture the speed of the object over time.

Taking a closer look at the predictions made by each of the networks, it becomes evi-

dent that the absence of any weight balancing between the terms in the loss function has a

48

6.4. PINN

significant impact on the results. Without explicitly defining weights for the data fidelity
term and the residuals term, the most complex network exhibits a distinct advantage,

yielding the most favorable predictions compared to the other network architectures.

However, it is crucial to consider the underlying reasons behind this observed dom-
inance. The absence of manual weight assignment allows the network to prioritize one
term over the other based solely on the inherent characteristics of the problem. In cases
where one term carries more significant importance or contributes more significantly to
the overall loss, the network may inadvertently neglect or underemphasize the other term,

leading to potential inaccuracies or inconsistencies in the predictions.

Taking a look at the predictions made with each of the networks, we can see that with
no weights balancing both of the terms, the most complex network prevails and gives
out the best results when compared to the other architectures. Due to not having any
manually defined weights, the network can overshadow and neglect one of the terms in
the loss function if the other one is much more important which is why it is a good idea

to balance out both.

The performance evaluation of the three networks provides valuable insights into
their predictive power across the six variables. Let us delve into the mean errors exhibited

by each network for positions in X, Y, and Z, as well as the velocity components.

The most complex network showed mean errors of 778.52 km for positions in X,
34.46 km for positions in Y, 860.44 km for positions in Z and 0.87 km/s for velocity in X,
0.050 km/s for velocity in Y, 0.76 km/s for velocity in Z. The second network resulted in
mean errors of 1076.45 km for positions in X, 172.70 km for positions in Y, 1373.03 km
for positions in Z and 1.43 km/s for velocity in X, 0.16 km/s for velocity in Y, 1.10 km/s
for velocity in Z. The most simple network resulted in a mean error of 1597.60 km for
positions in X, 299.23 km for positions in Y, 1216.78 km for positions in Z and 1.59 km/s
for velocity in X, 0.16 km/s for velocity in Y, 1.37 km/s for velocity in Z.

From these errors, we can conclude that in this case, the most complex network,
despite its higher architectural complexity, consistently outperforms the other networks
across all variables. It exhibits significantly lower mean errors for positions in X, Y, and
Z, as well as for velocity components. This suggests that the intricate architecture of the
network enables it to capture and model the underlying relationships more effectively,

resulting in more accurate predictions.

6.4.1.2 Input Width = 500, Output Width = 30

Starting by looking at the losses, it is noticeable that the behaviors of all of the three
networks are similar (hovering at around V20m? for the two more complex ones and
slightly lower for the more simple one at around V15m%. What is possible to see here is
that the standard deviation values for all of the networks are much higher (specially on
the first two) which represents more instability on the training of said models.

49

CHAPTER 6. PREDICTIVE METHODS FOR STATE VECTORS

The higher standard deviation values for the more complex networks may be at-
tributed to the fact that we want the model to forecast the variables for the same amount
of timesteps as previously but only considering half of the input timesteps.

In contrast, the simpler network displays a lower standard deviation, implying a
more stable training process. This could be to the fact that a simpler network works
better when we are dealing with less input data. This proves the importance of striking
a balance between model complexity and training stability, while having in mind our

specific case.

Validation loss - PINN model Validation loss - PINN model Validation loss - PINN model

— Average Validation loss — Average Validation loss —— Average Validation loss
Standard Deviation Standard Deviation Standard Deviation

g2 g g
g 3 e 3,
20
a0
15 15

o 20 40 60 80 o 20 a0 60 80 100 [10 20 30 a0 50 60
Epochs Epochs. Epochs

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.7: PINN - Loss Evolution for different architectures and 500 Input Steps

Let us delve into the predictions made by the networks and explore how the utiliza-
tion of a smaller input window impacts the performance of the PINNs. To provide a
comprehensive analysis, we will once again employ graphical visualization, focusing on
the variables of interest, namely the positions (x) and velocities (x). Considering the
smaller input window size, it is anticipated that the networks may encounter challenges
in comprehensively capturing the temporal dynamics of the system. The limited histor-
ical context provided by a shorter input window may hinder the comprehension of the
network on understanding the evolving patterns and relationships between inputs and

outputs over longer time intervals.

-2000{ — Predictions 2000 — Predictions -2000 — Predictions
Labels Labels Labels

-3000 -3000 -3000

4000 4000 -4000

- 5000
2000 5000

x [km]
x[km]
x [km]

~6000 -6000
~6000

~7000 ~7000
-7000
-8000 -8000
-8000

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 H 10 15 20 25 30
Time [min] Time [min] Time [min]

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture
Figure 6.8: PINN - Predictions (x) for Different Architectures and 500 Input Steps

Examining the predictions made by each network, it becomes apparent that the second
network outperforms the others in terms of predictive accuracy for both positions and
velocities. The improved performance of the second network suggests that the reduced
temporal context does not significantly hinder its ability to capture essential features of

50

6.4. PINN

— predictions — Predictions 44 — Ppredictions
Labels Labels Labels
2 2
) 2
0
° 0
- /

[5 10 15 20 25 30 0 5 10 15 20 25 30 0 H 10 15 20 25 30
Time (min] Time [min] Time [min]

xdot [kms]
xdot [km/s]

\

xcot [kms]
Lo
\

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture
Figure 6.9: PINN - Predictions (x) for Different Architectures and 500 Input Steps

the system dynamics. This outcome emphasizes the capacity of the network to adapt and
make effective use of the available information, even when operating under constraints
imposed by a smaller input window. It is all a matter of finding the perfect network for
the data we have.

Finally, lets analyze the mean errors attained with this setup. Concerning the most
complex network, the mean errors for the positions in X were 895.34 km, 178.86 for
positions in Y and 777.12 for positions in Z. For the velocities, the errors were 0.83 km/s
for the velocity in X, 0.16 km/s for the velocity in Y and 0.86 km/s for the velocity in
Z. For the second network, the mean errors for the positions in X were 563.10 km, for
the positions in Y they were 83.85 km and for the positions in Z they were 285.80 km.
Concerning the velocities, these were 0.32 km/s in the X axis, 0.13 km/s in the Y axis
and 0.53 km/s in the Z axis. Finally, for the most simple network, the mean errors were
1231.84 km for the positions in X, 135.95 km for the positions in Y and 539.22 km for the
Z axis. For the velocities, the errors were 0.50 km for the X axis, 0.23 km for the Y axis
and 1.18 for the Z axis.

To conclude this section concerning of not using any coefficients for both terms, the
choice of input window size has a notable impact on the predictive performance of the
networks. When using 1000 input steps, the most complex network achieved the lowest
mean errors for both positions and velocities. However, with a reduced input window of

500 steps, the second network demonstrated superior performance across all variables.

6.4.2 Bounded Coefficients

To establish a balanced relationship between the data fidelity term and the residuals term
in the PINN loss function, it is essential to define coefficients that represent the relative
importance of each term. By assigning appropriate weights, we can precisely control the
contribution of each term and achieve the desired balance. In this section, we will explore
the use of different weight combinations for both the 1000 and 500 input step scenarios,
allowing for a comparative analysis of the results obtained.

By varying the weights, we can investigate the impact of different emphasis placed
on the data fidelity and residuals terms. Determining the perfect balance between the

51

CHAPTER 6. PREDICTIVE METHODS FOR STATE VECTORS

data fidelity and residuals terms requires careful consideration and experimentation. It
is important to note that the optimal setup may depend on various factors, such as the
actual problem domain, the dataset, as well as network architecture thus fine-tuning the
weights based on empirical evaluation is crucial to achieve the best performance.

The loss corresponds to a linear combination between the data fidelity and the PDE
residuals such as weight + Data_Fidelity + (1 —weight)+ PDE_residuals. What we will be

experimenting is to explore different weight coefficients over the multiple architectures.

6.4.2.1 Input Width = 1000, Output Width = 30

To begin the analysis, we consider a weight combination where 10% of importance is
assigned to the data fidelity term, while the remaining 90% of importance is allocated to
the residuals of the equations. This weight distribution aims to emphasize the significance
of capturing the underlying system dynamics while still considering the available data.
This section is dedicated to using an input window with 1000 steps.

Upon examining the losses obtained using this weight combination, we observe that
the values continue to hover around V15 to V20 m? for all three networks. However, an
interesting pattern emerges when analyzing the second network. Across multiple trials,
the models exhibit substantial variation in their losses, particularly around the fifth epoch.
This suggests that the training process for the second network may be more sensitive to

the weight distribution, potentially leading to fluctuations in its performance.

Validation loss - PINN model Validation loss - PINN model Validation loss - PINN model

— Average Validation loss — Average Validation loss 50 —— Average Validation loss
Standard Deviation 4000 Standard Deviation Standard Deviation

3000

20 2000 30

3 3 1000 3
15 20
0

~1000

~2000 o

0 10 20 30 40 0 10 20 30 40 50 60 0 1 20 30 40 50 60 70
Epochs Epochs. Epochs

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.10: PINN - Loss Evolution for Different Architectures, 1000 Input Steps and 0.1
Weight

Comparing the losses obtained from the perfectly balanced weight distribution with
the previous experiment, where the weight was highly biased towards the physical part,
reveals some interesting observations. Firstly, the loss values achieved using the balanced
weight distribution are noticeably lower, hovering around V10m?. This indicates that as-
signing equal importance to both the data fidelity term and the residuals of the equations
yields improved performance in terms of minimizing the overall loss.

Furthermore, examining the standard deviation values of the losses provides addi-
tional insights into the stability and consistency of the networks. It is evident that the
standard deviation values are reduced across all three networks when using the balanced

52

6.4. PINN

weight distribution. This reduction implies that the models exhibit more consistent and
reliable performance throughout the training process.

While the improvements in loss values and standard deviations are apparent for all
networks, it is worth noting that the second and third networks demonstrate more well-
defined and smaller standard deviation values. This suggests that the balanced weight
distribution has a particularly beneficial effect on these architectures, resulting in more

stable training and enhanced predictive capabilities.

Validation loss - PINN model Validation loss - PINN model Validation loss - PINN model

— Average Validation loss — Average Validation loss 18 —— Average Validation loss
Standard Deviation Standard Deviation Standard Deviation

0 10 20 30 a0 50 0 10 20 30 a0 50 60 70 0 10 20 30 40 50 60 70
Epochs Epochs Epochs

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.11: PINN - Loss Evolution for Different Architectures, 1000 Input Steps and 0.5
Weight

In the final weight distribution scenario, where the data part is assigned a weight of
0.9 and the residuals a weight of 0.1, some observations can be made. Firstly, both the loss
values and the standard deviations are significantly smaller compared to the previous
experiments. This suggests that emphasizing the data fidelity term while downplaying
the residuals leads to improved overall performance in terms of minimizing the loss.

The smaller loss values obtained in this scenario indicate that the predictions are
aligning more closely with the given data. By assigning a higher weight to the data part,
the network is effectively prioritizing the fitting of the observed data points, resulting in
a better alignment between the predicted values and the actual measurements. Conse-
quently, the overall loss is reduced, indicating a higher level of accuracy and precision in
the predictions of the network.

Similarly, the smaller standard deviations reflect a higher level of consistency and
stability in the training process. The reduced variability in the loss values across multiple
trials signifies that the performance of the network is more reliable and less prone to
fluctuation. However, it is worth noting that while the standard deviations are smaller
overall, the most complex network exhibits higher deviations compared to the other two
architectures.

Repeating the process conducted in the experiment with unbounded coefficients, we
will now examine the actual predictions generated by the models using the different
weight distributions.

Firstly, analyzing the results attained, concerning the positions in x, when we consider
0.1 importance for the data, we can see that the results are similar between the multiple

networks. For the velocity in X, the same is seen. Shifting our attention to weighting

53

CHAPTER 6. PREDICTIVE METHODS FOR STATE VECTORS

Validation loss - PINN model Validation loss - PINN model Validation loss - PINN model

— Average Validation loss — Average Validation loss
Standard Deviation Standard Deviation

» 4 s w
g 820 £20
: w
15 15
0

0 10 20 30 40 50 60 70 [10 20 30 40 50 60 0 10 20 30 40
Epochs Epochs. Epochs

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.12: PINN - Loss Evolution for Different Architectures, 1000 Input Steps and 0.9
Weight

—— Ppredictions.

8000 8000 Labels

8000
6000
6000

4000
4000

x [km]
x Tkm]

2000 2000

o
~2000

~2000 ~2000
-4000

~4000 ~4000

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.13: PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.1
Weight

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.14: PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.1
Weight

equally both terms, we can see that the best results, both for the position and velocity,
are with the most complex network [32, 16, 32]. When considering 0.9 importance to the
data part, we can also see that the results are better with the most complex network.

When examining the actual mean errors for each of the networks, it is possible to
visualize the differences that having a different setup have in the predictions. Let us begin
with the most complex network, where a weight of 0.1 was assigned. In this scenario, the
network achieved mean errors of 1554.78 km for positions in x, 102.48 km for positions
in y, and 789.59 km for positions in z. In terms of velocities, the errors were 0.91 km/s in
the x-axis, 0.14 km/s in the y-axis, and 1.54 km/s in the z-axis.

54

6.4. PINN

w0 \\‘\ — F:;ebi\‘(stmns 8000 10000 — I:;E:;‘(Stmns
g 5000 8000
4000 \ 000
4000
. N : o
= = 2000 1 2000
° 0
—2000 —2000 —2000
N N
(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.15: PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.5
Weight

P

—— Predictions - —— Predictions -2

\ Lavets Labels Labers
3 \ . N
\ -

xdot [km/s]
xdot [km/s]
xdot [km/s]

[H 10 15 20 25 30 4 H 10 15 20 25 30 0 H 10 15 20 2 30

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture
Figure 6.16: PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.5

— redictions — Predictions
6000 Labels 10000 Labels
4000
4000
6000
7 0w o
H B v
0 2000
0
2000
2000

4000 -4000 -4000
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 H 10 15 20 25 30
Time [min] Time [min] Time [min]

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

6000

4000

x [km]

2000

~2000

Figure 6.17: PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.9
Weight

However, when the weight was adjusted to 0.5, a remarkable improvement was ob-
served. The mean errors significantly decreased, with values around 181.78 km for po-
sitions in x, 133.34 km for positions in y, and 171.78 km for positions in z. The velocity
errors were also reduced to 0.18 km/s in the x-axis, 0.076 km/s in the y-axis, and 0.20

km/s in the z-axis.

For the weight distribution of 0.9, the most complex network encountered a different
outcome. While the mean errors decreased compared to the initial weight of 0.1, they
were still higher than when using the weight of 0.5. The errors amounted to 722.23 km
for positions in x, 201.38 km for positions in y, and 458.97 km for positions in z. In terms

55

CHAPTER 6. PREDICTIVE METHODS FOR STATE VECTORS

xdot [km/s]

! !

xdot [kms]
[kmjs]

10 15
Time (min] Time [min] Time [min]

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.18: PINN - Predictions (x) for Different Architectures, 1000 Input Steps and 0.9
Weight

of velocities, the errors were 0.43 km/s in the x-axis, 0.11 km/s in the y-axis, and 0.86
km/s in the z-axis.

Looking at the second network, the pattern of improvement with the weight adjust-
ment is repeated. With a weight of 0.1, the network exhibited mean errors of 1220.26
km for positions in x, 187.04 km for positions in y, and 1940.04 km for positions in z.
The velocity errors were 1.90 km/s in the x-axis, 0.27 km/s in the y-axis, and 1.13 km/s
in the z-axis. However, when the weight was adjusted to 0.5, significant improvements
were observed. The mean errors decreased to 1078.03 km for positions in x, 73.52 km
for positions in y, and 766.77 km for positions in z. The velocity errors reduced to 0.82
km/s in the x-axis, 0.10 km/s in the y-axis, and 1.00 km/s in the z-axis. Similarly, for the
weight distribution of 0.9, the second network displayed improved performance but with
slightly higher errors compared to the weight of 0.5. The mean errors were 916.58 km for
positions in x, 140.95 km for positions in y, and 636.68 km for positions in z. The velocity
errors were 0.56 km/s in the x-axis, 0.29 km/s in the y-axis, and 0.74 km/s in the z-axis.

Lastly, we turn our attention to the most simple network. With a weight of 0.1, this
network exhibited mean errors of 2121.29 km for positions in x, 191.59 km for positions
in y, and 1249.36 km for positions in z. The velocity errors were 1.21 km/s in the x-axis,
0.30 km/s in the y-axis, and 2.38 km/s in the z-axis. With a weight adjustment to 0.5,
the mean errors decreased to 1758.71 km for positions in x, 612.95 km for positions in y,
and 1906.75 km for positions in z. The velocity errors were 2.040 km/s in the x-axis, 0.31
km/s in the y-axis, and 1.70 km/s in the z-axis. For the weight distribution of 0.9, the
most simple network continued to display higher errors compared to the weight of 0.5.
The mean errors were 2060.44 km for positions in x, 253.98 km for positions in y, and
2063.61 km for positions in z. The velocity errors amounted to 1.89 km/s in the x-axis,
0.36 km/s in the y-axis, and 2.13 km/s in the z-axis.

In conclusion, adjusting the weight distributions in the bounded coefficients experi-
ment yielded varying effects on the mean errors of the networks. In general, the exper-
iments showed that assigning a weight of 0.5 to the data part and 0.5 to the residuals
yielded the best results across the networks. This balanced weight distribution consis-
tently led to lower mean errors for both position and velocity predictions compared to

56

6.4. PINN

other weight combinations. It strikes a good compromise between incorporating the avail-
able data and enforcing the underlying physical equations. The best setup showed up to

be the most complex network using a weight of 0.5.

6.4.2.2 Input Width = 500, Output Width = 30

To delve into the analysis of the section that considers a 500-step input window, we start
by examining a weight combination where 10% of importance is assigned to the data
fidelity term, while the remaining 90% of importance is allocated to the residuals of the
equations. This weight distribution aims to strike a balance between capturing the system
dynamics and leveraging the available data. By focusing on a narrower input window, we
can explore how the amount of historical data taken into account affects the performance
of the PINNS.

When examining the losses in this section, we observe that they consistently hover
around V15m? for all three networks. This indicates a relatively stable performance
across epochs. However, it is worth noting that during certain epochs, particularly for
the second network, the validation losses drop below the \/ﬁm2 threshold. This suggests
that the ability of the network to capture the underlying dynamics and fit the data is
particularly strong at those specific points in training. Additionally, the standard devi-
ation values, which reflect the variability of the results across multiple trials, are fairly
comparable among the three networks. This indicates a similar level of consistency in

their performances.

Validation loss - PINN model Validation loss - PINN model Validation loss - PINN model

— Average Validation loss 30 — Average Validation loss 2
Standard Deviation Standard Deviation

0 10 20 30 40 50 0 20 40 60 80 0 10 20 30 40 50
Epochs Epochs Epochs

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.19: PINN - Loss Evolution for Different Architectures, 500 Input Steps and 0.1
Weight

Moving on to the scenario where both the data fidelity term and the residuals are
equally weighted, we observe notable improvements in the loss values across all network
configurations. The losses decrease significantly and stabilize around V8m?, indicating
a more accurate and precise prediction performance. This balanced weight distribution
allows the networks to effectively capture the dynamics of the system while still lever-
aging the available data. Additionally, the standard deviation values, which provide
insights into the variability of results, also exhibit a decrease compared to the previous
experiment where the physical part had higher importance. This reduction in standard

57

CHAPTER 6. PREDICTIVE METHODS FOR STATE VECTORS

deviation signifies a higher level of consistency and reliability in the predictions made by
the networks, further underscoring the benefits of weight balance in achieving improved

performance.

Validation loss - PINN model Validation loss - PINN model Validation loss - PINN model

— Average Validation loss 2 — Average Validation loss —— Average Validation loss
o Standard Deviation Standard Deviation 18 Standard Deviation

1
10
" " 12
§s g g
9 . M}V\/\

[5 10 15 20 25 30 35 [5 0 15 20 25 30 35 40 0 10 20 30 40 50 60 70 80
Epochs Epochs Epochs

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.20: PINN - Loss Evolution for Different Architectures, 500 Input Steps and 0.5
Weight

Similarly to the observations made with the larger input window, we find that in-
creasing the weight assigned to the data fidelity term leads to further reductions in the
loss values. Allocating 90% importance to this term results in significant improvements,
with the loss values decreasing to approximately V2m?. This weight distribution places a
greater emphasis on accurately fitting the available data, allowing the networks to better
capture the underlying patterns. The remarkable reduction in the loss values demon-
strates the effectiveness of incorporating a higher weight for the data fidelity term in

enhancing the overall predictive capabilities of the models.

Validation loss - PINN model Validation loss - PINN model Validation loss - PINN model

— Average Validation
26 Standard Deviation

loss — Average Validation loss 20 —— Average Validation loss
Standard Deviation Standard Deviation

%20 §2s %1
16 20
14
16 15

0 10 20 30 40 50 0 10 20 30 40 50 60 4 10 20 30 40 50
Epochs Epochs. Epochs

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.21: PINN - Loss Evolution for Different Architectures, 500 Input Steps and 0.9
Weight

Continuing our investigation, we will now revisit the experiment conducted with an
input window of 1000 steps and shift our focus towards evaluating the concrete predic-
tions produced by the models under varying weight distributions.

In examining the generated predictions, it is noteworthy to observe that the network
with the simplest architecture demonstrates superior performance for the considered
variables when assigning 90% importance to the residuals of the PDEs. This improvement
observed with the reduced input dataset can be attributed to the inherent advantage of

a simpler model in handling limited data. This finding underscores the importance of

58

6.4. PINN

— Predictions — Predictions ~2000 — Predictions

-2000 Labels ~1000 Labels

—2000 -3000
~3000
~3000
-4000

~4000
~4000
* _s000 x % ~5000
-5000 \

—6000 ~6000 -6000

/
7000 7 ~7000 \//\/\\/ 7000 \ /\/\/\/\
<~ -

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 H 10 15 20 25 30

fkm]
Tkm]
tkm]

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.22: PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.1
Weight

— Predictions — Predictions
Labels Labels

xdot [km/s]
dot [km/s]
dot [km/s]

] L
-° ¢ e | AL
(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.23: PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.1
Weight

~2000 — Predictions.

— Predictions — Predictions
~2000 -
Labels Labels 2000 Labels
~3000
3000
3000

-4
000 —4000
~4000
-5000

x Tkm]

-5000

x [km]
x [km]

-5000
6000 6000

~7000 -6000
~7000

-8000
~8000 ~7000 o~

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 H 10 15 20 25 30
Time [min] Time [min] Time [min]

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.24: PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.5
Weight

identifying an optimal configuration specific to the problem at hand. Similarly, when
both terms are assigned equal importance, the basic network consistently outperforms
the other architectures, albeit with diminished disparities. However, it is important to
note that when allocating 90% importance to the data term, the performance of all three
networks is not desirable. This outcome can be attributed to the utilization of a smaller
dataset, where the combination of reduced data availability and increased emphasis on it
contributes to a degradation in predictive accuracy.

In conclusion, for this relatively simple dataset consisting mainly of sinusoidal waves,

the most effective architectures are either a simpler dense network (16-8-16) with greater

59

CHAPTER 6. PREDICTIVE METHODS FOR STATE VECTORS

— Predictions
Labels

xdot [kms]
xdot [km/s]
xdot [km/s]

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 H 10 15 20 25 30
Time (min] Time [min] Time [min]

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.25: PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.5
Weight

=2000 —— Predictions ~2000 —— Predictions 2000 —— Predictions
Lavels Caves A\

- 3000 —3000
~4000
-4000 ~4000
N\
-5000
-5000

[km]
[km]

~5000

x Tkm]

X —6000
-6000 -6000
~7000

= -7000
8000 7000

-9000 -8000 -8000

0 H 10 15 20 25 30 4 H 10 15 20 25 30 0 H 10 15 20 2 30
Time [min] Time [min] Time [min]

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.26: PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.9
Weight

xdot [kmys]

xdot [km/s]

xdot [km/s]
|

[5 10 15 20 25 30 0 5 10 15 20 25 30 0 H 10 15 20 25 30
Time [min] Time [min] Time [min]

(32, 16, 32) Architecture (32, 8, 32) Architecture (16, 8, 16) Architecture

Figure 6.27: PINN - Predictions (x) for Different Architectures, 500 Input Steps and 0.9
Weight

emphasis on the physical component, or a more complex network with a larger input
size and increased reliance on the available data (weight of 0.5 instead of 0.1). These
architectures demonstrate improved performance in capturing the repetitive patterns
present in the data over time. The findings highlight the importance of selecting an
appropriate network architecture and weight distribution considering a dataset as input

to achieve accurate predictions in this specific context.

These experiments have yielded significant insights into the advantages of incorporat-
ing domain-specific knowledge and exploiting the underlying physical equations within
the context of predictive modeling. By comparing the performance of a dense neural

60

6.4. PINN

network with the optimal configuration against that of a PINN, notable improvements
have been observed.

The findings reveal that the PINN consistently outperforms the dense network in
terms of positional predictions. The mean errors achieved by the PINN are consistently
three times lower across the positions, highlighting its superior accuracy and ability to
capture the underlying dynamics of the system. However, it is worth noting that the Y-axis
predictions were slightly worse. This suggests the presence of additional complexities or
variations in the Y-axis dynamics that may require further investigation.

Concerning the velocities, the PINN exhibits enhanced performance across all axes.
The mean errors obtained by the PINN are significantly lower than those of the dense
network, indicating its capability to capture the relationships between the position and
velocity variables. This improvement in velocity predictions can be attributed to the
ability of PINNSs to incorporate the governing equations and exploit the known physical
constraints, leading to more accurate and consistent results.

These findings underscore the importance of leveraging domain-specific knowledge
and incorporating physics-based constraints in a predictive scenario like this one. The
ability of PINNSs to integrate physical laws into the learning process enables it to capture

the dynamics of the system more effectively.

61

7

CoMPARING SINDyY wita PINNs

In this chapter, we aim to conduct a comparative analysis of the two methods previously
analyzed, namely SINDy and PINNs. By directly comparing these methods, we seek to
draw conclusions regarding their respective advantages and performance characteristics.
Both SINDy and PINNSs offer promising paths for data-driven modeling and and variable
prediction, but they differ in their underlying principles and methodologies.

We will investigate various aspects of these methods, including their ability to ac-
curately identify system dynamics, their computational efficiency, and their robustness
in the presence of noise. By comparing their performances on the same set of prob-
lems with the same datasets, we aim to gain a deeper understanding of the strengths
and weaknesses inherent in each approach. To ensure a fair and robust comparison, we
will carefully design our experimental setup, considering factors such as dataset selec-
tion, training procedures, hyperparameter tuning, and performance metrics. Through
experimentation, analysis, and interpretation of results, we aim to uncover the unique
advantages, limitations, and performance characteristics of these methods. The insights
derived from this study will not only contribute to this work but to also guide researchers
in different domains in making decisions regarding the choice of method for data-driven

modeling of complex dynamical systems.

When comparing the robustness to noise between SINDy and PINNs, one important
detail outstands. One of the main disadvantages of SINDy is its limited ability to handle
high levels of noise in the observations of the system. While SINDy has shown great
performance under moderate noise levels, surpassing the levels tested in previous studies
can significantly hinder its effectiveness. When applied to a dataset with excessive noise,
SINDy may fail to identify the underlying equations governing the system. This limitation
renders SINDy less reliable and potentially useless in scenarios where the measurements
are highly noisy since the predictions for the future are based on propagating the found

equations.

In contrast, PINNs offer a more robust alternative in the presence of significant noise.
The initial phase of PINNs involves leveraging the actual data points available to the

network, employing a mean squared error loss to compare the predictions of the network

62

with the corresponding labels. This initial step does not strictly rely on the explicit
incorporation of governing equations into the network architecture. The second part that
corresponds to the residuals however, acts as a regularizer for the predictions made and
does not rely strictly on them as it happens with SINDy. As a result, PINNs can better
deal with noisy measurements and provide reasonable predictions, even when the system
dynamics are not accurately captured by explicit equations. This characteristic makes
PINNs an appealing choice in scenarios where the measurements exhibit a high degree
of noise.

By highlighting these differences in robustness to noise, it becomes evident that the
choice between SINDy and PINNs depends on the specific characteristics of the data,
particularly the noise levels present in the observations. While SINDy excels in situations
with relatively low noise, it may struggle to provide any predictions when faced with
substantial noise since no equations are found in this scenario. In contrast, PINNs can
offer more reliable results in the presence of significant noise, as they can leverage the
data directly without strictly relying on explicit equations.

Analyzing the actual results obtained from using SINDy, it becomes evident that it
performs better both in in-distribution and out-of-distribution scenarios when predicting
the future positions and velocities of a satellite compared to the PINNs.

Firstly, the performance of SINDy on an out-of-distribution orbit deserves attention.
The experiments ran in Chapter 5 where SINDy was trained with more than one orbit
were tested on an out-of-distribution orbit. Despite the inherent challenges posed by
predicting future states based on data that deviates from the training distribution, SINDy
exhibits notable robustness. The results obtained from out-of-distribution orbits demon-
strate that SINDy maintains a high level of accuracy, suggesting its capability to generalize
well beyond the training data. This generalization ability is valuable in real-world sce-
narios where system dynamics can vary, ensuring the applicability and reliability of the
SINDy approach. The errors attained for an out-of-distribution with SINDy were around
the same values than with the predicitons for an in-distribution orbit with the PINNs
which shows that SINDy is the obvious choice in this case.

In order to improve the predictive performance of the PINN, an obvious choice was
to train the model using data from multiple orbits. By incorporating data from different
orbits, the model would have access to a more comprehensive representation of the space
surrounding the Earth. This expanded dataset has the potential to enhance the ability of
the model to capture complex relationships and make more accurate predictions.

To accommodate the multi-orbit data, a 3D representation was adopted. In this rep-
resentation, the data was organized as a cube, where the first dimension corresponded
to the sequence length, representing the number of points in the timeseries. The second
dimension represented the number of different orbits, allowing the model to consider
data from various satellites performing different trajectories. Finally, the third dimen-
sion corresponded to the features used in the model, such as positions, velocities and

atmosphere density.

63

CHAPTER 7. COMPARING SINDY WITH PINNS

W

Features

Orbits

—Sequence Length—

Figure 7.1: Data Format

Figure 7.1 visualizes this data format as a cube. Each timestep across all satellites
and their respective variables could be evaluated within this cube structure. By incorpo-
rating data from multiple orbits, the model could potentially leverage the diversity of
orbital characteristics and capture the intricate dynamics of the space environment more
effectively.

However, a significant challenge arises when dealing with this expanded data format,
namely, the growth in the number of parameters. As the size of the input window in-
creases, the number of parameters required by the network also increases. Consequently,
the computational feasibility of the model becomes a crucial consideration. With hun-
dreds of millions of parameters, training the model using input windows longer than a
certain threshold, such as 5 minutes, becomes computationally intractable.

When examining the performance of SINDy on an in-distribution orbit and predicting
thirty minutes into the future, the results demonstrate exceptional accuracy as depicted in
Figure 7.2. The errors between the predicted values and the corresponding actual labels
are minimal, indicating that SINDy effectively captures the underlying dynamics of the
system. These promising results highlight the capability of SINDy to accurately model
and predict the behavior of the satellite for this time window. Comparing these results
with PINNs, using one with the best setup found trained with only one orbit, testing
its predictions for the future for the same orbit (in-distribution) the errors averaged at
around 100 km for the positions which are much higher than with SINDy.

The predictions made with SINDy for future positions and velocities showcase out-
standing accuracy across all axes. The mean errors are as follows: for position predictions,
4.79 km in the X-axis, 0.0028 km in the Y-axis, and 0.22 km in the Z-axis. Regarding
velocity predictions, the mean errors are 2.09 x 1073 km/s in the X-axis, 9.88 x 10™% km/s
in the Y-axis, and 5.01 x 10~ km/s in the Z-axis. These impressive results affirm the
precision and reliability of SINDy in capturing and forecasting the ephemerides of the
satellite.

The impressive results obtained from SINDy for both in-distribution and out-of-
distribution orbits further emphasize its potential for predicting the positions and ve-
locities of satellites. These findings demonstrate the strengths and advantages of the
SINDy approach in accurately capturing system dynamics and making predictions, even

64

Difference between training data and model simulation (Position) Difference between training data and model simulation (Velocity)

0

E —— model error é —— model error
= < 0.000
£ -5 :
5 Z
5 g
® ‘ ‘ ‘ ‘ : ‘ 5 -0.005 L ‘ ‘ ‘ ‘ ‘
0.0 0.1 0.2 0.3 0.4 05 0.0 0.1 0.2 03 0.4 05
- @ 0.000
£ o —— model error = —— model error
< =
> > —0.001
5 Z
5, 6
. ; © -0.002 1 . . . : :
0.0 0.1 0.2 0.3 0.4 05 0.0 0.1 0.2 03 0.4 05
- T 0.000
€ —— model error € —— model error
< o <
~ § —0.005 1
5 z
|5 8
s T T T T T ; © 00101 T T T T :
0.0 01 0.2 0.3 0.4 05 0.0 0.1 0.2 03 0.4 0.5
time [hour] time [hour]
Error in Positions Error in Velocities

Figure 7.2: SINDy - Errors for Positions and Velocities over time

in challenging scenarios up to a certain level of noise.

When we analyzed the results attained with the PINNs, we reached the conclusion that
they were subpar, even when comparing with such a simple model as SINDy. However,
current research is being done on the poor performance of PINNs due to the optimization
process and the difficulties that arise when posing soft constraints on the predictions
made [34, 72, 68, 70, 11, 30].

65

38

ATMOSPHERE DENSITY

Up until now, our focus has been on predicting the positions and velocities of satellites.
However, in order to gain a comprehensive understanding of the behavior of the satel-
lite and its interaction with the surrounding environment, it is crucial to consider the
prediction of another vital variable, atmosphere density.

The scarcity of measurements of atmosphere density, along with its significant impact
on the positions and velocities of satellites, reveals the importance of accurately predict-
ing this variable [7]. The density of the atmosphere plays a pivotal role in determining the
magnitude of forces acting on the satellite, such as drag and atmospheric disturbances.
These forces, in turn, directly influence the trajectory of the satellite, speed, and overall
orbital behavior.

Considering the limited availability of direct measurements for atmosphere density,
leveraging data-driven approaches that incorporate domain knowledge in any way, like
SINDy and PINNs do, becomes valuable. These methods have demonstrated their ef-
fectiveness in capturing complex relationships from sparse or noisy data, making them
well-suited for inferring and predicting atmosphere density based on the available mea-
surements. By extending our analysis to encompass the prediction of atmosphere density,
we intend to understand the interplay between this variable and the movement of the

satellite.

8.1 PINN

Given that the data used in this study was generated using a propagator that already con-
sidered external factors affecting the positions and velocities of the satellite, we realized
that the original architecture of the PINNs did not incorporate these effects, specifically
atmospheric drag, in the equations used for residual minimization. This posed a sig-
nificant discrepancy between the generated data and the equations being optimized in
the PINNs framework. To address this discrepancy, it became necessary to incorporate
the term related to atmospheric drag within the PINNs architecture. By doing so, the
expression for minimizing the residual between the predicted values and the observed

66

8.2. SINDY

data could better align with the physical reality that is implictly in the dataset.

After successfully incorporating the missing variables into the dataset, the next step is
to repeat the experiments to now predict the atmosphere density. Two different architec-
tures were tested for predicting the atmosphere density which were the best ones from the
previous section. The first architecture was a simpler network with a structure of 16-8-16
trained with 500 input steps and assigned weights of 0.1 for the data-driven part and 0.9
for the residuals.The second architecture was a more complex network with a structure
of 32-16-32, trained with 1000 input steps and assigned a weight of 0.5 between the two
terms. By implementing these architectures, the aim was to leverage the available dataset,
including the newly incorporated variables, to accurately predict the atmosphere density.

Let us look at the relative errors over time for both of these networks in Figure 8.1.

D . — Relatve Eror 03— rettive Eror

— ~—_
// — 30z —
_— o1 :\/ \
- —
T e T

Network [32, 16, 32] Network [16, 8, 16]

Figure 8.1: Relative Errors for both network architectures over a timespan of 30 minutes

Upon analyzing the relative errors over time for both chosen architectures, it is evident
that they do not exhibit an ideal performance, although they are not entirely inaccurate.
Particularly, the relative errors of the simpler network demonstrate some capability to
capture the variations in density as they relate to the positions of the satellite throughout
the duration. Despite the imperfections, the fact that the simpler network exhibits some
accuracy between density variations and satellite positions is promising. It suggests that
even with a relatively basic architecture, there is potential to capture essential patterns

and dependencies within the data.

8.2 SINDy

In addition to exploring the neural network approach, another interesting approach
for predicting the atmosphere density is to re-apply SINDy. The objective here is to
uncover a PDE that accurately describes the behavior of the density variable, enabling us
to propagate and obtain future values.

Looking at the results attained by this approach in Figure 8.2, this yielded remarkably
superior results compared to those attained using the PINNs. By leveraging the potential
of SINDy to identify governing equations from data, we were able to discover a PDE that
effectively captures the dynamics of the atmosphere density.

One reason why SINDy achieves better results for the atmosphere density variable is

its ability to handle multiple trajectories, which provides a distinct advantage over the

67

CHAPTER 8. ATMOSPHERE DENSITY

0.175{ — Relative Error

0.150 1

0.125 1

0.100 4

Density

0.075

0.050 1

0.025 1

0.000 1

0 5 10 15 20 25 30
Time [min]

Figure 8.2: SINDy - Relative Errors for Density Predictions

PINN methodology. Unlike PINNs, which are limited to considering a single orbit due to
computational constraints, SINDy seamlessly incorporates multiple trajectories without
encountering intractability issues. The incorporation of multiple trajectories in SINDy
offers one big benefit. Firstly, it allows for a more comprehensive understanding of the
system by incorporating data from various regions around the Earth. These diverse mea-
surements capture the dynamics of the atmosphere in different geographical locations,
which inherently improves the predictions for the density variable since it is dependent
on the positions. Despite the computational challenges faced by PINNSs, the ability of
SINDy to incorporate multiple trajectories highlights its flexibility and scalability. By
leveraging data from diverse orbits, SINDy aggregates the information available from

various orbits, leading to more accurate predictions of the atmosphere density variable.

68

9

Furture WORK

This research has provided valuable insights into the effectiveness of incorporating PINNs
for predicting positional and velocity variables in a system characterized by sinusoidal
wave-like behaviors. Building upon the current findings, there are several avenues for
future work that can further enhance the understanding and applicability of PINNs in
this context.

One potential direction for future research is to extend the current model to incorpo-
rate the prediction of additional variables, specifically a realistic approach of the atmo-
sphere density. While the dataset used was enhanced with the atmosphere density value
values used by the propagator which in turn uses the NRMLSIS model, incorporating
realistic atmosphere density values in the PINN framework can provide more accurate

and comprehensive predictions.

Since the data-centric side of the network already considers the intrinsic variations in
the atmosphere density, if there were enough realistic measurements for the atmosphere
density, an average value could be considered within the physical part of the network and
what could be done is to minimize the difference between the predicted values by the
first part of the network and the average density values considered. This approach can
serve as a proxy for atmosphere density prediction and enable faster and more accurate

predictions of both future state vectors and density.

Moreover, investigating the use of PINNs for predicting density alongside position
and velocity variables offers the potential to overcome the limitations and accumulated
errors often encountered in conventional atmosphere models. By leveraging the phys-
ical constraints embedded within the PINN architecture, the predictions can be made
more robust and reliable, circumventing the exponential behaviors often observed in
traditional models. This could lead to significant improvements in atmospheric model-
ing, particularly in systems where accurate density estimation is critical, such as within
Neuraspace. Evaluating the performance of the network across different input sizes and
architectures, and comparing it to other machine learning and physics-based modeling

approaches, can further validate and refine the proposed methodology.

69

CHAPTER 9. FUTURE WORK

9.1 Conclusion

In conclusion, the future work should focus on extending the current PINN framework
to incorporate a more realistic prediction of the atmosphere density alongside positional
and velocity variables. It is also interesting to explore more techniques in the realm
of PINNSs to bypass the optimization difficulties we encountered which are also being in-
vestigated by other researchers [34, 72, 68, 70, 11, 30]. This approach has the potential to
overcome the limitations of existing atmosphere models and enable faster, more accurate
predictions.

However, it is still important to understand that we managed to describe the move-
ment dynamics of satellites for both in and out-of-distribution orbits with such a simple
model as SINDy proving the ability of using empirically found PDEs to describe their mo-
tion. The results obtained were accurate, highlighting the potential of such a simple and
lightweight approach for improving our understanding of space systems. Nevertheless,
there is still significant room for accuracy and predictive power improvement since the
errors remain in the kilometers range. Further exploration of different function libraries
and optimization techniques may lead to even better results.

Overall, these results offer valuable insights into the behavior of space systems and
provide a promising foundation for future research in this area. With the continued
development of SINDy and other machine learning techniques, we will likely see further
improvements in our ability to model and predict the behavior of satellites or debris,

ultimately contributing to better tracking of those objects.

70

(4]

[6]

BIBLIOGRAPHY

N. Aeronautics and S. Administration. In-Space Propulsion. urRL: https://www.
nasa.gov/sites/default/files/atoms/files/4._soa_in-space_propulsion_
chapter_2022_0.pdf (cit. on p. 2).

N. Aeronautics and S. Administration. Orbital Debris Quarterly News. Jan. 2015.
URL: https://orbitaldebris. jsc.nasa.gov/quarterly-news/pdfs/odgnv19
i1.pdf (cit.on p. 1).

N. Aeronautics and S. Administration. The Threat of Orbital Debris and Protecting
NASA Space Assets from Satellite Collisions. Apr. 2009. urr: http:// images .
spaceref.com/news/2009/0DMediaBriefing28Apr09-1.pdf (cit. on p. 1).

Y. Akahoshi et al. “Influence of space debris impact on solar array under power gen-
eration”. In: International Journal of Impact Engineering 35.12 (2008). Hypervelocity
Impact Proceedings of the 2007 Symposium, pp. 1678-1682. 1ssn: 0734-743X.
por: https://doi.org/10.1016/j.ijimpeng. 2008 .07 .048. urRL: https:
[/www.sciencedirect.com/science/article/pii/S0734743X0800170X (cit. on
p- 2).

M. Z. Alom et al. “A State-of-the-Art Survey on Deep Learning Theory and Architec-
tures”. In: Electronics 8 (Mar. 2019), p. 292. por: 10.3390/electronics8030292
(cit. on p. 12).

B. Bowman et al. “A New Empirical Thermospheric Density Model JB2008 Using
New Solar and Geomagnetic Indices”. In: AIAA/AAS Astrodynamics Specialist Con-
ference and Exhibit. por: 10.2514/6.2008-6438. eprint: https://arc.aiaa.org/
doi/pdf/10.2514/6.2008-6438. urL: https://arc.aiaa.org/doi/abs/10.251
4/6.2008-6438 (cit. on p. 8).

S. Bruinsma et al. “Thermosphere and satellite drag”. In: Advances in Space Re-
search (2023). 1ssN: 0273-1177. por: https://doi.org/10.1016/j.asr.2023.05
.011. UrL: https://www.sciencedirect.com/science/article/pii/S0273117
723003587 (cit. on p. 66).

71

https://www.nasa.gov/sites/default/files/atoms/files/4._soa_in-space_propulsion_chapter_2022_0.pdf
https://www.nasa.gov/sites/default/files/atoms/files/4._soa_in-space_propulsion_chapter_2022_0.pdf
https://www.nasa.gov/sites/default/files/atoms/files/4._soa_in-space_propulsion_chapter_2022_0.pdf
https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv19i1.pdf
https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv19i1.pdf
http://images.spaceref.com/news/2009/ODMediaBriefing28Apr09-1.pdf
http://images.spaceref.com/news/2009/ODMediaBriefing28Apr09-1.pdf
https://doi.org/https://doi.org/10.1016/j.ijimpeng.2008.07.048
https://www.sciencedirect.com/science/article/pii/S0734743X0800170X
https://www.sciencedirect.com/science/article/pii/S0734743X0800170X
https://doi.org/10.3390/electronics8030292
https://doi.org/10.2514/6.2008-6438
https://arc.aiaa.org/doi/pdf/10.2514/6.2008-6438
https://arc.aiaa.org/doi/pdf/10.2514/6.2008-6438
https://arc.aiaa.org/doi/abs/10.2514/6.2008-6438
https://arc.aiaa.org/doi/abs/10.2514/6.2008-6438
https://doi.org/https://doi.org/10.1016/j.asr.2023.05.011
https://doi.org/https://doi.org/10.1016/j.asr.2023.05.011
https://www.sciencedirect.com/science/article/pii/S0273117723003587
https://www.sciencedirect.com/science/article/pii/S0273117723003587

BIBLIOGRAPHY

(8]

[11]

[12]

[16]

[17]

[18]

B. F. Chao. “Earth’s oblateness and its temporal variations”. In: Comptes Rendus
Geoscience 338.14 (2006). La Terre observée depuis l’espace, pp. 1123-1129. 1ssN:
1631-0713. por: https://doi.org/10.1016/j.crte.2006.09.014. UrL:
https://www.sciencedirect.com/science/article/pii/S1631071306002690
(cit. on p. 7).

J. G. Charles Bussy-Virat Aaron Ridley. “Effects of Uncertainties in the Atmospheric
Density on the Probability of Collision Between Space Objects”. In: Space Weather
16 (2018), pp. 519-537. por: https://doi.org/10.1029/2017SW001705 (cit. on
p- 16).

K. Chen, Y. Zhou, and F. Dai. “A LSTM-based method for stock returns prediction:
A case study of China stock market”. In: 2015 IEEE International Conference on
Big Data (Big Data). 2015, pp. 2823-2824. por: 10.1109/BigData.2015.7364089
(cit. on p. 40).

S. Cuomo et al. Scientific Machine Learning through Physics-Informed Neural Net-

works: Where we are and What's next. 2022. arXiv: 2201.05624 [cs.LG] (cit. on
pp- 65, 70).

H. D. Curtis. Orbital Mechanics for Engineering Students. Linacre House, Jordan Hill,
Oxford OX2 8DP: Elsevier Butterworth-Heinemann, 2005. 1sBN: 0-7506-6169-0
(cit. on pp. 2, 6-8, 29).

B. C. Daniels and I. Nemenman. “Automated adaptive inference of phenomeno-
logical dynamical models”. In: Nature communications 6.1 (2015), p. 8133 (cit. on
p- 18).

V. A. Davis et al. “Spacecraft Charging Interactive Handbook”. In: 6th Spacecraft
Charging Technology. Nov. 1998, pp. 211-215 (cit. on p. 2).

A. B. Downey. Think Stats: Exploratory Data Analysis in Python. O’Reilly Media,
2014, pp. 57-60. 1sBN: 1491907339 (cit. on p. 24).

K. J. Erickson. What Is the Solar Cycle? urL: https://spaceplace.nasa.gov/

solar-cycles/en/ (cit. on p. 3).

ESA. Space debris by the numbers. 2023. urL: https://www.esa.int/Space_
Safety/Space_Debris/Space_debris_by_the_number (cit. on p. 21).

G. Faulconbridge. U.S. and Russia track satellite crash debris. 2009. urRL: https:
[/www.reuters.com/article/us-space-collision-idUSTRE51A8IA20090212
(cit. on p. 2).

R. Fu, Z. Zhang, and L. Li. “Using LSTM and GRU neural network methods for
traffic flow prediction”. In: 2016 31st Youth Academic Annual Conference of Chinese
Association of Automation (YAC). 2016, pp. 324-328. por: 10.1109/YAC.2016.780
4912 (cit. on p. 40).

72

https://doi.org/https://doi.org/10.1016/j.crte.2006.09.014
https://www.sciencedirect.com/science/article/pii/S1631071306002690
https://doi.org/https://doi.org/10.1029/2017SW001705
https://doi.org/10.1109/BigData.2015.7364089
https://arxiv.org/abs/2201.05624
https://spaceplace.nasa.gov/solar-cycles/en/
https://spaceplace.nasa.gov/solar-cycles/en/
https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_number
https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_number
https://www.reuters.com/article/us-space-collision-idUSTRE51A8IA20090212
https://www.reuters.com/article/us-space-collision-idUSTRE51A8IA20090212
https://doi.org/10.1109/YAC.2016.7804912
https://doi.org/10.1109/YAC.2016.7804912

BIBLIOGRAPHY

[20] K.Fukamietal. “Sparse identification of nonlinear dynamics with low-dimensionalized
flow representations”. In: Journal of Fluid Mechanics 926 (Sept. 2021). po1: 10. 1
017/ jfm.2021.697. urL: https://doi.org/10.1017%2F jfm.2021.697 (cit. on
p- 20).

[21] O. Fuks and H. A. Tchelepi. “LIMITATIONS OF PHYSICS INFORMED MACHINE
LEARNING FOR NONLINEAR TWO-PHASE TRANSPORT IN POROUS MEDIA”.
In: Journal of Machine Learning for Modeling and Computing 1.1 (2020), pp. 19-37.
1SsN: 2689-3967 (cit. on p. 15).

[22] Z.Hao et al. Physics-Informed Machine Learning: A Survey on Problems, Methods and
Applications. 2023. arXiv: 2211.08064 [cs.LG] (cit. on p. 4).

[23] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics.
Springer New York, 2009. 1sBN: 9780387848587. urL: https://books.google.
pt/books?id=tVIjmNS30b8C (cit. on p. 19).

[24] D. Hathaway. “The Solar Cycle”. In: Living Rev. Sol. Phys. 39 (Sept. 2015), p. 227.
por1: 10.1007/1rsp-2015-4 (cit. on p. 3).

[25] D. Ivanov et al. “Decentralized differential drag based control of nanosatellites
swarm spatial distribution using magnetorquers”. In: Advances in Space Research
67.11 (2021). Satellite Constellations and Formation Flying, pp. 3489-3503. 1ssN:
0273-1177. por: https://doi.org/10.1016/j.asr.2020.05.024. urL: https:
[/www.sciencedirect.com/science/article/pii/S0273117720303471 (cit. on
p- 20).

[26] N.Johnson. “The Collision of Iridium 33 and Cosmos 2251: The Shape of Things
to Come”. In: National Aeronautics and Space Administration. 60th International

Astronautical Congress, 2010. urL: https://ntrs.nasa.gov/api/citations/20
100002023/ downloads /20100002023 . pdf (cit. on p. 2).

[27] K. Kaheman, J. N. Kutz, and S. L. Brunton. “SINDy-PI: a robust algorithm for
parallel implicit sparse identification of nonlinear dynamics”. In: Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 476.2242 (Oct.
2020). por: 10.1098/rspa.2020.0279. urL: https://doi.org/10.1098%2
Frspa.2020.0279 (cit. on p. 20).

(28] A. Kaptanoglu. How to effectively use the SINDy method for system identification.
2021. urL: https://youtube.com/playlist?1ist=PLN90bHJU- JLoOfEKOKyBs2
qLTV70kMZ25 (cit. on p. 30).

[29] A. A. Kaptanoglu et al. “PySINDy: A comprehensive Python package for robust
sparse system identification”. In: Journal of Open Source Software 7.69 (2022),
p- 3994. po1: 10.21105/ joss.03994. urr: https://doi.org/10.21105/joss.03
994 (cit. on pp. 18, 30).

73

https://doi.org/10.1017/jfm.2021.697
https://doi.org/10.1017/jfm.2021.697
https://doi.org/10.1017%2Fjfm.2021.697
https://arxiv.org/abs/2211.08064
https://books.google.pt/books?id=tVIjmNS3Ob8C
https://books.google.pt/books?id=tVIjmNS3Ob8C
https://doi.org/10.1007/lrsp-2015-4
https://doi.org/https://doi.org/10.1016/j.asr.2020.05.024
https://www.sciencedirect.com/science/article/pii/S0273117720303471
https://www.sciencedirect.com/science/article/pii/S0273117720303471
https://ntrs.nasa.gov/api/citations/20100002023/downloads/20100002023.pdf
https://ntrs.nasa.gov/api/citations/20100002023/downloads/20100002023.pdf
https://doi.org/10.1098/rspa.2020.0279
https://doi.org/10.1098%2Frspa.2020.0279
https://doi.org/10.1098%2Frspa.2020.0279
https://youtube.com/playlist?list=PLN90bHJU-JLoOfEk0KyBs2qLTV7OkMZ25
https://youtube.com/playlist?list=PLN90bHJU-JLoOfEk0KyBs2qLTV7OkMZ25
https://doi.org/10.21105/joss.03994
https://doi.org/10.21105/joss.03994
https://doi.org/10.21105/joss.03994

BIBLIOGRAPHY

[30] G.E. Karniadakis et al. “Physics-informed machine learning”. In: Nature Reviews
Physics 3.6 (June 2021), pp. 422-440. 1ssN: 2522-5820. por: 10.1038/s542254-021
-00314-5. urL: https://doi.org/10.1038/s42254-021-00314-5 (cit. on pp. 4,
65, 70).

[31] K. Karniadakis. “Physics-informed machine learning”. In: Nat Rev Phys 3 (2021),
pp- 422-440 (cit. on pp. 5, 10, 11).

[32] S. Khodairy et al. “Impact of solar activity on Low Earth Orbiting satellites”. In:
Journal of Physics: Conference Series 1523 (Apr. 2020), p. 012010. po1: 10.1088/17
42-6596/1523/1/012010 (cit. on p. 3).

[33] D.P Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings (2015). urL: http://arxiv.org/
abs/1412.6980 (cit. on p. 15).

[34] A.Krishnapriyan et al. “Characterizing possible failure modes in physics-informed
neural networks”. In: Advances in Neural Information Processing Systems. Ed. by
M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021, pp. 26548-26560. URL:
https://proceedings.neurips.cc/paper/2021/file/df438e5206f31600e6ae4
af72£2725f1-Paper.pdf (cit. on pp. 13-15, 65, 70).

[35] K. Kusano et al. “A physics-based method that can predict imminent large solar
flares”. In: Science 369.6503 (2020), pp. 587-591. por: 10.1126/science.aaz2511.
eprint: https://www.science.org/doi/pdf/10.1126/science.aaz2511. URL:

https://www.science.org/doi/abs/10.1126/science.aaz2511 (cit. on p. 3).

[36] P.Labs. PLANET LABS PUBLIC ORBITAL EPHEMERIDES. urL: https://ephemerides.
planet-labs.com/ (cit. on p. 22).

[37] Z. K. Lawal et al. “Physics-Informed Neural Network (PINN) Evolution and Be-
yond: A Systematic Literature Review and Bibliometric Analysis”. In: Big Data
and Cognitive Computing 6.4 (2022). 1ssn: 2504-2289. por: 10.3390/bdcc6040140.
URL: https://www.mdpi.com/2504-2289/6/4/140 (cit. on p. 4).

[38] H. W. Lilliefors. “On the Kolmogorov-Smirnov Test for the Exponential Distribu-
tion with Mean Unknown”. In: Journal of the American Statistical Association 64.325
(1969), pp. 387-389. por: 10.1080/01621459. 1969 . 10500983. eprint: https:
[www . tandfonline . com/doi/pdf/10.1080/01621459. 1969 . 10500983. URL:
https://www.tandfonline.com/doi/abs/10.1080/01621459.1969. 10500983
(cit. on p. 25).

[39] S.Maddu et al. “Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks”. In: Machine Learning: Science and Technology 3.1 (July
2021). por: 10.13140/RG.2.2.30690.04806 (cit. on pp. 14, 15).

74

https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1088/1742-6596/1523/1/012010
https://doi.org/10.1088/1742-6596/1523/1/012010
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
https://doi.org/10.1126/science.aaz2511
https://www.science.org/doi/pdf/10.1126/science.aaz2511
https://www.science.org/doi/abs/10.1126/science.aaz2511
https://ephemerides.planet-labs.com/
https://ephemerides.planet-labs.com/
https://doi.org/10.3390/bdcc6040140
https://www.mdpi.com/2504-2289/6/4/140
https://doi.org/10.1080/01621459.1969.10500983
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1969.10500983
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1969.10500983
https://www.tandfonline.com/doi/abs/10.1080/01621459.1969.10500983
https://doi.org/10.13140/RG.2.2.30690.04806

BIBLIOGRAPHY

[40] N.M. Mangan et al. Inferring biological networks by sparse identification of nonlinear
dynamics. 2016. arXiv: 1605.08368 [math.DS] (cit. on p. 20).

[41] P. M. Mehta et al. “Satellite drag coefficient modeling for thermosphere science
and mission operations”. In: Advances in Space Research (2022). 1ssN: 0273-1177.
por: https://doi.org/10.1016/j.asr.2022.05.064. urL: https://www.
sciencedirect.com/science/article/pii/S0273117722004458 (cit. on pp. 2,
3).

[42] . Meseguer, 1. Pérez-Grande, and A. Sanz-Andrés. “3 - Keplerian orbits”. In:
Spacecraft Thermal Control. Ed. by]J. Meseguer, 1. Pérez-Grande, and A. Sanz-Andrés.
Woodhead Publishing, 2012, pp. 39-57. 1sBN: 978-1-84569-996-3. por1: https:
//doi.org/10.1533/9780857096081.39. URL: https://www.sciencedirect.
com/science/article/pii/B9781845699963500034 (cit. on p. 2).

[43] T.S.Minna Palmroth Maxime Grandin. “Lower-thermosphere-ionosphere (LTI)
quantities: current status of measuring techniques and models”. In: Annales Geo-
physicae 39 (2021), pp. 189-237. por: https://doi.org/10.5194/angeo-39-189-
2021 (cit. on p. 16).

[44] NASA. Frequently Asked Questions: Orbital Debris. 2011. urL: https://www.nasa.
gov/news/debris_faq.html (cit. on p. 2).

[45] NASA. Shield Development. urL: https://hvit.jsc.nasa.gov/shield-development/
(cit. on p. 2).

[46] V. Nateghi, M. Manzi, and M. Vasile. “Autoencoder-based Thermospheric Density
Estimation Using GPS Tracking Data”. In: Oct. 2021 (cit. on p. 17).

[47] V. Nateghi, M. Manzi, and M. Vasile. “Autoencoder-based Thermospheric Density
Estimation Using GPS Tracking Data”. In: Oct. 2021 (cit. on p. 20).

[48] Navigation and A. I. Facility. An Overview of Reference Frames and Coordinate Sys-
tems in the SPICE Context. Apr. 2009. urr: https://naif. jpl.nasa.gov/
pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_

coordinate_systems.pdf (cit. on p. 6).

[49] J. Pateras, P. Rana, and P. Ghosh. “A Taxonomic Survey of Physics-Informed Ma-
chine Learning”. In: Applied Sciences 13.12 (2023). 1ssn: 2076-3417. por: 10.33
90/app13126892. urL: https://www.mdpi.com/2076-3417/13/12/6892 (cit. on
pp- 4, 10).

[50] H.Pengand X. Bai. “Exploring Capability of Support Vector Machine for Improving
Satellite Orbit Prediction Accuracy”. In: Journal of Aerospace Information Systems
15.6 (2018), pp. 366-381. por: 10.2514/1.1010616. eprint: https://doi.org/1
0.2514/1.1010616. urL: https://doi.org/10.2514/1.1010616 (cit. on pp. 20,
21).

75

https://arxiv.org/abs/1605.08368
https://doi.org/https://doi.org/10.1016/j.asr.2022.05.064
https://www.sciencedirect.com/science/article/pii/S0273117722004458
https://www.sciencedirect.com/science/article/pii/S0273117722004458
https://doi.org/https://doi.org/10.1533/9780857096081.39
https://doi.org/https://doi.org/10.1533/9780857096081.39
https://www.sciencedirect.com/science/article/pii/B9781845699963500034
https://www.sciencedirect.com/science/article/pii/B9781845699963500034
https://doi.org/https://doi.org/10.5194/angeo-39-189-2021
https://doi.org/https://doi.org/10.5194/angeo-39-189-2021
https://www.nasa.gov/news/debris_faq.html
https://www.nasa.gov/news/debris_faq.html
https://hvit.jsc.nasa.gov/shield-development/
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://doi.org/10.3390/app13126892
https://doi.org/10.3390/app13126892
https://www.mdpi.com/2076-3417/13/12/6892
https://doi.org/10.2514/1.I010616
https://doi.org/10.2514/1.I010616
https://doi.org/10.2514/1.I010616
https://doi.org/10.2514/1.I010616

BIBLIOGRAPHY

[51]

[52]

[57]

[58]

[59]

[60]

[61]

J. M. Picone et al. “NRLMSISE-00 empirical model of the atmosphere: Statistical
comparisons and scientific issues”. In: Journal of Geophysical Research: Space Physics
107.A12 (2002), SIA 15-1-SIA 15-16. po1: https://doi.org/10.1029/2002JA0
09430. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029
/2002JA009430. urL: https://agupubs.onlinelibrary.wiley.com/doi/abs/1
0.1029/2002JA009430 (cit. on p. 8).

J. L. Proctor et al. “Exploiting sparsity and equation-free architectures in complex
systems”. In: European Physical Journal Special Topics 223 (Dec. 2014). po1: 10. 114
O/epjst/e2014-02285-8 (cit. on p. 18).

T. Pulkkinen. “Space Weather: Terrestrial Perspective”. In: Living Reviews in Solar
Physics 4.1 (May 2007), p. 1. 1ssn: 1614-4961. por: 10.12942/1rsp-2007-1. URL:
https://doi.org/10.12942/1rsp-2007-1 (cit. on p. 3).

PySINDy. SSR and FROLs (the greedy algorithms!) examples. 2022. URL: https:
[/github.com/dynamicslab/pysindy/blob/master/examples/11_SSR_FROLS_
examples.ipynb (cit. on p. 30).

M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations”. In: Journal of Computational Physics 378
(2019), pp. 686-707 (cit. on p. 4).

K. T. Richard Licata Piyush Mehta. “Machine-Learned HASDM Thermospheric
Mass Density Model With Uncertainty Quantification”. In: Space Weather 20 (2022).
por: https://doi.org/10.1029/2021SW002915 (cit. on pp. 15-17).

T. G. Roberts. Popular Orbits 101. 2022. urL: https://aerospace.csis.org/
aerospacel101/earth-orbit-101/ (cit. on p. 27).

H. Schaeffer et al. “Sparse dynamics for partial differential equations”. English (US).
In: Proceedings of the National Academy of Sciences of the United States of America
110.17 (Apr. 2013), pp. 6634-6639. 1ssn: 0027-8424. po1: 10.1073/pnas. 130275
2110 (cit. on p. 18).

M. D. Schmidt et al. “Automated refinement and inference of analytical models
for metabolic networks”. In: Physical Biology 8.5 (Aug. 2011), p. 055011. por:
10.1088/1478-3975/8/5/055011. urL: https://dx.doi.org/10.1088/1478-39
75/8/5/055011 (cit. on p. 18).

P. Sedgwick. “Pearson’s correlation coefficient”. In: BMJ 345 (July 2012), e4483-
e4483. por: 10.1136/bmj.e4483 (cit. on p. 25).

N. W. Service. Air Pressure. urRL: https: / /www . weather . gov/ jetstream/

pressure (cit. on p. 3).

B. Silva. Practical Tips - Optimization. 2020. URL: https://pysindy.readthedocs.
io/en/latest/tips.html#foptimization (cit. on p. 30).

76

https://doi.org/https://doi.org/10.1029/2002JA009430
https://doi.org/https://doi.org/10.1029/2002JA009430
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2002JA009430
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2002JA009430
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002JA009430
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002JA009430
https://doi.org/10.1140/epjst/e2014-02285-8
https://doi.org/10.1140/epjst/e2014-02285-8
https://doi.org/10.12942/lrsp-2007-1
https://doi.org/10.12942/lrsp-2007-1
https://github.com/dynamicslab/pysindy/blob/master/examples/11_SSR_FROLS_examples.ipynb
https://github.com/dynamicslab/pysindy/blob/master/examples/11_SSR_FROLS_examples.ipynb
https://github.com/dynamicslab/pysindy/blob/master/examples/11_SSR_FROLS_examples.ipynb
https://doi.org/https://doi.org/10.1029/2021SW002915
https://aerospace.csis.org/aerospace101/earth-orbit-101/
https://aerospace.csis.org/aerospace101/earth-orbit-101/
https://doi.org/10.1073/pnas.1302752110
https://doi.org/10.1073/pnas.1302752110
https://doi.org/10.1088/1478-3975/8/5/055011
https://dx.doi.org/10.1088/1478-3975/8/5/055011
https://dx.doi.org/10.1088/1478-3975/8/5/055011
https://doi.org/10.1136/bmj.e4483
https://www.weather.gov/jetstream/pressure
https://www.weather.gov/jetstream/pressure
https://pysindy.readthedocs.io/en/latest/tips.html#optimization
https://pysindy.readthedocs.io/en/latest/tips.html#optimization

BIBLIOGRAPHY

[63]

[64]

[65]

[70]

H. Song and S. Hu. “Open Problems in Applications of the Kalman Filtering Algo-
rithm”. In: Proceedings of the 2019 International Conference on Mathematics, Big Data
Analysis and Simulation and Modelling (MBDASM 2019). Atlantis Press, 2019/10,
pp- 185-190. 1sBN: 978-94-6252-811-6. por: 10.2991/mbdasm-19.2019.43. URL:
https://doi.org/10.2991/mbdasm-19.2019.43 (cit. on p. 17).

N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929-1958.
URL: http://jmlr.org/papers/vi5/srivastaval4a.html (cit. on p. 16).

J. N. K. Steven L. Brunton Joshua L. Proctor. “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems”. In: Proceedings
of the National Academy of Sciences 113.15 (2016), pp. 3932-3937. por: https:
//doi.org/10.1073/pnas. 1517384113 (cit. on pp. 18-20, 28).

S. M. Stigler. “Gauss and the Invention of Least Squares”. In: The Annals of Statistics
9(1981), pp- 465-474 (cit. on p. 4).

M. F. Storz et al. “High accuracy satellite drag model (HASDM)”. In: Advances
in Space Research 36.12 (2005). Space Weather, pp. 2497-2505. 1ssn: 0273-1177.
por: https://doi.org/10.1016/j.asr.2004.02.020. urL: https://www.
sciencedirect.com/science/article/pii/S0273117705002048 (cit. on pp. 2,
16).

S. Subramanian et al. Adaptive Self-supervision Algorithms for Physics-informed Neu-
ral Networks. 2022. arXiv: 2207.04084 [cs.LG] (cit. on pp. 15, 65, 70).

S. Suthaharan. “Support Vector Machine”. In: Machine Learning Models and Al-
gorithms for Big Data Classification: Thinking with Examples for Effective Learning.
Boston, MA: Springer US, 2016, pp. 207-235. 1sBN: 978-1-4899-7641-3. por1: 10
.1007/978-1-4899-7641-3_9. URL: https://doi.org/10.1007/978-1-4899-76
41-3_9 (cit. on p. 21).

S. Wang, S. Sankaran, and P. Perdikaris. Respecting causality is all you need for

training physics-informed neural networks. 2022. arXiv: 2203.07404 [cs.LG] (cit.
on pp. 15, 65, 70).

S. Wang, Y. Teng, and P. Perdikaris. Understanding and mitigating gradient patholo-
gies in physics-informed neural networks. 2020. arXiv: 2001.04536 [cs.LG] (cit. on
p- 15).

S. Wang, X. Yu, and P. Perdikaris. “When and why PINNS fail to train: A neural tan-
gent kernel perspective”. In: Journal of Computational Physics 449 (2022), p. 110768.
1ssN: 0021-9991. por: https://doi.org/10.1016/j. jcp.2021.110768. URL:
https://www.sciencedirect.com/science/article/pii/5002199912100663X
(cit. on pp. 15, 65, 70).

77

https://doi.org/10.2991/mbdasm-19.2019.43
https://doi.org/10.2991/mbdasm-19.2019.43
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/https://doi.org/10.1073/pnas.1517384113
https://doi.org/https://doi.org/10.1073/pnas.1517384113
https://doi.org/https://doi.org/10.1016/j.asr.2004.02.020
https://www.sciencedirect.com/science/article/pii/S0273117705002048
https://www.sciencedirect.com/science/article/pii/S0273117705002048
https://arxiv.org/abs/2207.04084
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1007/978-1-4899-7641-3_9
https://arxiv.org/abs/2203.07404
https://arxiv.org/abs/2001.04536
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110768
https://www.sciencedirect.com/science/article/pii/S002199912100663X

BIBLIOGRAPHY

[73]

[75]

(78]

B. Weber. Classical Orbital Elements. urL: https://orbital-mechanics.space/

classical -orbital - elements/classical -orbital - elements . html (cit. on
p. 6).
B. Weeden. 2007 Chinese Anti-Satellite Test Fact Sheet. 2010. urL: https: [/

swfound.org/media/9550/chinese_asat_fact_sheet_updated_2012.pdf (cit.
on p. 1).

B. Weeden. 2009 Iridium-Cosmos Collision Fact Sheet. 2010. urL: https://swfound.
org/media/6575/swf_iridium_cosmos_collision_fact_sheet_updated_2012

.pdf (cit. on p. 2).

D. R. Weimer. A comparison of the JB2008 and NRLMSISE-00 neutral density models.
URL: https://ccmc.gsfc.nasa.gov/static/files/Mini-GEM-%202014-GEM-
CEDAR-Weimer . pdf (cit. on p. 8).

Z. Xu et al. “Recursive long short-term memory network for predicting nonlinear
structural seismic response”. In: Engineering Structures 250 (2022), p. 113406. 1ssN:
0141-0296. por: https://doi.org/10.1016/j.engstruct.2021.113406. UrL:
https://www.sciencedirect.com/science/article/pii/S0141029621015133
(cit. on p. 42).

L. Yunpeng et al. “Multi-step Ahead Time Series Forecasting for Different Data
Patterns Based on LSTM Recurrent Neural Network”. In: 2017 14th Web Informa-
tion Systems and Applications Conference (WISA). 2017, pp. 305-310. po1: 10.1109
/WISA.2017.25 (cit. on p. 40).

78

https://orbital-mechanics.space/classical-orbital-elements/classical-orbital-elements.html
https://orbital-mechanics.space/classical-orbital-elements/classical-orbital-elements.html
https://swfound.org/media/9550/chinese_asat_fact_sheet_updated_2012.pdf
https://swfound.org/media/9550/chinese_asat_fact_sheet_updated_2012.pdf
https://swfound.org/media/6575/swf_iridium_cosmos_collision_fact_sheet_updated_2012.pdf
https://swfound.org/media/6575/swf_iridium_cosmos_collision_fact_sheet_updated_2012.pdf
https://swfound.org/media/6575/swf_iridium_cosmos_collision_fact_sheet_updated_2012.pdf
https://ccmc.gsfc.nasa.gov/static/files/Mini-GEM-%202014-GEM-CEDAR-Weimer.pdf
https://ccmc.gsfc.nasa.gov/static/files/Mini-GEM-%202014-GEM-CEDAR-Weimer.pdf
https://doi.org/https://doi.org/10.1016/j.engstruct.2021.113406
https://www.sciencedirect.com/science/article/pii/S0141029621015133
https://doi.org/10.1109/WISA.2017.25
https://doi.org/10.1109/WISA.2017.25
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

ANNEx 1 - CCDF PrLorTs

10° = posX 10° = pos¥ 10° = posZ
107 10 107
B 8 8
107 10 102
-6 4 -2 2 4 6 -4 -2 0 2 4 6 -6 —4 -2 0 2 4 6
positionX 16 positionY 16 positionZ 16
(a) CCDF Position X (b) CCDF Position Y (c) CCDF Position Z
Figure I.1: CCDF Plots - Positions (Satellite 0903)

100 — X 10° —_— el 10° — =iz

10 10 07

107 10 107

(a) CCDF Velocity X

(b) CCDF Velocity Y

(c) CCDF Velocity Z

Figure 1.2: CCDF Plots - Velocities (Satellite 0903)

79

ANNEX I. ANNEX 1 -CCDF PLOTS

w0 — drag

] x 50 s 100 125 150 175 200
drag

Figure 1.3: CCDF Plot - Drag (Satellite 0903)

80

ANNEX 2 - NORMAL PrRoBABILITY PrLoOTS

1e6 Normal probability plot 186 Normal probability plot 17 Normal probability plot
8
3 :;:)l(e‘ g;ilfe\ madel
— — 7
& 10 s
4 4
E 2 E, E 05
> =
~N
5 ° g o 5
8 F g oo
£ -2 £ &
_a -4 0.5
5 -
-1.0
-3 -2 -1 o 1 2 3 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2

Velocity X (m/s)

Standard deviations frem mean

(a) Normal Prob. Plot - Position X

(b) Normal Prob. Plot - Position Y

Standard deviations frem mean

Standard deviations from mean

(c) Normal Prob. Plot - Position Z

Figure II.1: Normal Probability Plots - Positions (Satellite 0903)

Normal probability plot

Normal probability plot

Normal probability plot

e000 model model model
6000 4 = welX 500 { — welY ———r
10000
4000 5000
2000 £ 200 E Soo0
- ~N
0 - z
B 8]
-2000 | —
> 2500 ES
-4000
5000 -5000
-6000
~7500
-8000 -10000
-3 -2 -1] 1 2 3 -3 -2 2 = -2 -1 0 1 2

Standard deviations from mean

(a) Normal Prob. Plot - Velocity X

(b) Normal Prob. Plot - Velocity Y

-1
Standard deviations from mean

(c) Normal Prob. Plot - Velocity Z

Standard deviations frem mean

Figure II.2: Normal Probability Plots - Velocities (Satellite 0903)

Drag (kg/m*~2)

Normal probability plot

-2 -1 0 1 2
Standard deviations from mean

Figure II.3: Normal Probability Plot - Drag (Satellite 0903)

81

ANNEX 3 - CORRELATION ProT

82

Plogaida . | e
LR

e 2
MU

..~;;!€- & Tk B
¥ ECI
ot &

i

i
=
"

by
£

AOH IR L
?,:;g e

4

23

2

o
, ﬁ_h._g(: hf:'.':"v.i P
i At %ﬁ
¢ o 5
5 gy ERY

Sk eVt 1A

&4 et

;“')'J:%? ok

At |

Figure III.1: Correlation Plot - Satellite ID: 090

83

	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Glossary
	Acronyms

	1 Motivation and Problem Statement
	2 Orbital Dynamics
	2.1 Keplerian Orbit
	2.2 Oblateness
	2.3 Current Atmospheric Density Modelling

	3 Physically-Inspired Machine Learning
	3.1 State of the art
	3.1.1 PINNs
	3.1.2 Predicting atmospheric density
	3.1.3 SINDy

	4 Exploratory Data Analysis
	4.1 Dataset
	4.2 Variations over time - orbital elements
	4.3 Variable Distributions
	4.4 Correlation
	4.5 Additional External Data
	4.6 Data Fidelity

	5 Preliminary Work
	5.1 Candidate Nonlinear Functions
	5.1.1 Domain-Driven Custom Functions
	5.1.2 Polynomial Functions

	5.2 Results
	5.2.1 Choice of the SINDy Optimizer
	5.2.2 First order PDE
	5.2.3 Polynomial Library
	5.2.4 Multiple Trajectories

	5.3 Data with full dynamics
	5.3.1 Custom Library
	5.3.2 Polynomial Library
	5.3.3 Multiple Trajectories

	5.4 Second order PDEs
	5.4.1 Polynomial Functions
	5.4.2 Multiple Trajectories

	5.5 Noise Analysis: Robustness to heavy-tailed noise

	6 Predictive Methods for State Vectors
	6.1 SINDy
	6.2 LSTM Network
	6.3 Feed Forward Network
	6.3.1 Input Width = 1000, Output Width = 30
	6.3.2 Input Width = 500, Output Width = 30

	6.4 PINN
	6.4.1 Unbounded Coefficients
	6.4.2 Bounded Coefficients

	7 Comparing SINDy with PINNs
	8 Atmosphere Density
	8.1 PINN
	8.2 SINDy

	9 Future Work
	9.1 Conclusion

	Bibliography
	I Annex 1 - CCDF Plots
	II Annex 2 - Normal Probability Plots
	III Annex 3 - Correlation Plot
	Back Matter
	Back Cover

