
DEPARTMENT OF
COMPUTER SCIENCE

JOSÉ TOMÁS SILVEIRA

Master in Civil Engineering

MODELLING CUSTOMER CHURN
WITH TIME-TO-EVENT APPROACHES

MASTER IN ANALYSIS AND ENGINEERING OF BIG DATA

NOVA University Lisbon
December, 2022

DEPARTMENT OF
COMPUTER SCIENCE

MODELLING CUSTOMER CHURN
WITH TIME-TO-EVENT APPROACHES

JOSÉ TOMÁS SILVEIRA

Master in Civil Engineering

Adviser: Cláudia Alexandra Magalhães Soares
Assistant Professor, NOVA University Lisbon

Co-adviser: João Varela
Data Scientist, NOS

MASTER IN ANALYSIS AND ENGINEERING OF BIG DATA

NOVA University Lisbon
December, 2022

Modelling customer churn with time-to-event approaches

Copyright © José Tomás Silveira, NOVA School of Science and Technology, NOVA Univer-

sity Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.6.7) [25].

https://github.com/joaomlourenco/novathesis

Para a minha família, Sophie e amigos.
Por me acompanharem durante este percurso, e tornarem

realidade a sua conclusão. Gosto muito de vocês.

Acknowledgements

This dissertation was only possible thanks to the support of a number of people, to whom

I owe my most sincere thanks. Firstly, I want to express my gratitude to my advisors,

Professor Claudia Soares and Joao Varela, for the invaluable knowledge transmitted and

for the availability and patience with me. This work would also not have been possible

without the help of my defence committee, Professor Ludwig Krippahl and Professor

Paula Amaral, who generously provided knowledge and expertise. To PhD. Ana Guedes,

I am grateful for the help and support during the first phase of this dissertation. I would

also like to thank my colleagues at NOS, Nuno Paiva, Francisco Delgado and Gabriel Dias,

for their help and feedback throughout this journey. Additionally, I want to thank NOS

SGPS, who generously provided the necessary infrastructure to make this dissertation

possible.

I also want to thank my family for all the support, motivation and confidence given to

me, even when my path wasn’t clearly defined. I want to express my gratitude to Sophie

for accompanying me on this journey and for the patience and support given when hard

times eventually came. Lastly, I want to thank my friends, Duarte, Rafa, Manuel, Andre,

Francisco and Luis, for all the friendship and support over the years and for making this

journey much easier.

iv

“Sometimes you lie in bed at night and you don’t have a single
thing to worry about. That always worries me!” (Charlie

Brown)

Abstract

Overtime, companies have shown an increased interest in enhancing their relationship

with existing clients, due to the high cost of attracting new customers. In lieu of this,

organizations started to adopt more proactive strategies in order to keep existing clients.

Modern approaches include the creation of predictive models to determine which clients

are more at risk of churning, and also which factors contributed the most for that decision.

Most churn predictive models used in industry comprise of binary classifiers, capa-

ble of identifying potential churners in discrete time-windows. One could use classi-

cal regression techniques to get continuous predictions, however, they do not work so

well when dealing with censored observations. In this dissertation, we use a framework

that generates continuous predictions whilst allowing censored observations by using so

called time-to-event models, or survival analysis models. Time-to-event models allow

for continuous churn predictions, thus obviating the need to train a new model for each

time-window, which by itself is already an advantage over classical models. However,

the main point is that survival analysis allows for a richer understanding on how churn

risk varies over time, which is essential for Customer relationship management (CRM) to

create better strategies at retaining clients. Since churn datasets have substantial class

imbalance, appropriate techniques were researched and used to deal with this problem.

An experimental pipeline was developed to run survival analysis experiments, and each

step thoroughly evaluated using the appropriate metrics and discussed. In the end, a

case-study is presented as a means to show the potential of survival modeling regarding

churn prediction and prevention, and also present several ways to leverage these models

in order to generate Key Performance Insights (KPI) about customer churn.

Keywords: Customer churn, Survival analysis, Machine learning, Ensemble methods,

Class imbalance

vi

Resumo

Com o passar do tempo, as organizações empresariais têm demonstrado um maior inte-

resse em aprimorar o relacionamento com os seus clientes, particularmente devido ao

elevado custo associado à aquisição de novos consumidores. Devido a estes custos, as

empresas começaram a adotar estratégias proativas de retenção de clientes. Abordagens

modernas incluem a criação de modelos preditivos para determinar quais os clientes

mais em risco de fazer churn, e também quais os fatores que mais contribuíram para essa

decisão.

No que toca ao churn, a maior parte dos modelos preditivos usados na industria sao

compostos por classificadores binários, capazes de identificar potenciais churners em

janelas de tempo discretas. É possível usar técnicas clássicas de regressão para obter

previsões contínuas, no entanto, estas não são compatíveis com observações censuradas.

Nesta dissertação, vamos usar uma abordagem que não só tem a capacidade de gerar

previsões contínuas, como também de permitir observações censuradas, através de um

grupo de modelos denominados por time-to-event, ou modelos de análise de sobrevivên-

cia. A maior vantagem deste tipo de modelos passa por permitir uma compreensão mais

rica da variação do risco de churn ao longo do tempo. Esta informação é essencial para

o departamento de gestão de relacionamento com o cliente (CRM), que assim consegue

criar melhores estratégias de retenção de clientes. Como as bases de dados relativas a

churn têm um desequilíbrio entre classes substancial, foram também estudadas quais as

técnicas apropriadas para lidar com este problema. Um processo experimental foi desen-

volvido de forma a correr experiências relacionadas com análise de sobrevivência, e cada

passo detalhadamente discutido e avaliado utilizando métricas apropriadas. No final, um

caso-de-estudo é apresentado como meio de mostrar os potenciais contributos que um

modelo de sobrevivência traz no contexto de previsão e prevenção de churn.

Palavras-chave: Churn de clients, Análise de sobrevivência, Aprendizagem automática,

Métodos de agrupamento, Desequilíbrio de classes

vii

Contents

List of Figures x

List of Tables xiii

List of Listings xv

Glossary xvi

Acronyms xviii

1 Introduction 1

1.1 Problem . 1

1.2 Motivation . 2

1.3 Objectives and Strategy . 2

2 State of the Art 3

2.1 Metrics . 3

2.2 Models . 4

2.3 Dealing with Class imbalance . 5

3 Methodology 7

3.1 Metrics . 7

3.2 Dealing with class imbalance . 9

3.3 Survival Analysis . 11

3.3.1 Fundamental concepts . 11

3.3.2 Statistical Methods . 12

3.3.3 Machine Learning . 15

4 Dataset and Exploratory Data Analysis 18

4.1 Database description . 18

4.2 Variable Description . 18

viii

4.3 Exploratory Data Analysis . 19

5 Experimental setup 25

5.1 Time-series validation . 25

5.2 Experimental Pipeline . 26

5.3 Data Preparation . 27

5.4 Class Imbalance . 29

5.5 Survival Targets . 29

5.6 Modeling . 30

5.7 Evaluation . 31

5.8 Experiments . 32

6 Results and Discussion 35

6.1 Class Imbalance . 35

6.1.1 Hyper-parameter search . 35

6.1.2 Sampler Comparison . 35

6.1.3 Recommendation . 39

6.2 Survival Targets . 39

6.2.1 Init-dur comparison . 39

6.2.2 End-dur comparison . 43

6.2.3 Granularity comparison . 45

6.2.4 Recommendation . 46

6.3 Modeling . 49

6.3.1 Hyper-parameter search . 49

6.3.2 Model Comparison . 50

6.3.3 Model computational performance 53

6.3.4 Recommendation . 55

6.4 Case study: Churn prevention and Customer retention 55

7 Conclusion and Future work 66

Bibliography 68

Appendices

A Appendix 1 72

B Appendix 2 73

C Appendix 3 74

C.1 Class Imbalance . 74

C.2 Survival features . 79

C.3 Survival Models and Benchmark . 79

ix

List of Figures

3.1 Class Imbalance: Random Undersampling (RUS) and Random Oversampling

(ROS) illustrations. 10

3.2 Class Imbalance: Tomek-links illustration. 10

3.3 Class Imbalance: Synthetic Minority Over-Sampling Technique (SMOTE) il-

lustration. 11

4.1 EDA: Churn rate per snapshot and churn window. 21

4.2 EDA: client-dur and pf-dur group counts. 22

4.3 EDA: Churn counts per client-dur and pf-dur groups. 22

4.4 EDA: Churn distribution per client-dur group. 23

4.5 EDA: Churn distribution per pf-dur. 23

4.6 EDA: Churn distribution per client-dur and pf-dur durations. 24

5.1 Rolling cross-validation in a time-series. 26

5.2 Experimental pipeline. 27

5.3 Data pipeline: Data loading, Nan Inputation, OneHotEncoding and Feature

selection. 28

5.4 Event and duration and how censoring influences its computation. 30

6.1 Lift and Gain Charts: Class Imbalance methods. 36

6.2 Lift chart: Class imbalance methods (lift-dur). 36

6.3 Monthly change in Lift (1st quantile): Class imbalance methods. 37

6.4 Monthly change in lift (1st quantile): Class imbalance (lift-dur). 37

6.5 C-score and Brier-score: Class Imbalance methods. 38

6.6 Monthly change in C-score and Brier-score: Class Imbalance methods. . . . 38

6.7 Lift and Gain Charts: Init-durs. 40

6.8 Lift chart: Init-durs (lift-dur). 40

6.9 Monthly change in Lift (1st quantile): Init-durs. 41

6.10 Monthly change in Lift (1st quantile): Init-durs (lift-dur). 41

6.11 C-score and Brier-score: Init-durs. 42

x

6.12 Monthly change in C-score and Brier-score: Init-durs. 42

6.13 Lift and Gain Charts: End-durs. 43

6.14 Lift chart: End-durs (lift-dur). 44

6.15 Monthly change in Lift (1st quantile): End-durs. 44

6.16 C-score and Brier-score: End-durs. 45

6.17 Monthly change in Lift (1st quantile): End-durs (lift-dur). 45

6.18 Monthly change in C-score and Brier score: End-durs. 46

6.19 Lift and Gain Charts: Granularity. 47

6.20 Lift chart: Granularity (lift-dur). 47

6.21 Monthly change in Lift (1st quantile): Granularity. 48

6.22 Monthly change in Lift (1st quantile): Granularity (lift-dur). 48

6.23 Lift and Gain Charts: Models. 50

6.24 Lift chart: Models (lift-dur). 50

6.25 Monthly change: Models comparison (Lift chart). 51

6.26 Monthly change in Lift (1st quantile): Models (lift-dur). 51

6.27 C-score and Brier-score: Models. 52

6.28 Monthly change in C-score and Brier-score: Modeling. 52

6.29 Fit-time: Models (number of train samples). 53

6.30 Lift and Gain (1st quantile): Models (number of train samples). 54

6.31 C-score and Brier-score: Models (number of train samples). 54

6.32 Survival Curve: Kaplan-Meier Estimate. 56

6.33 Customer distribution (total and churned) for pf-dur and client-dur. 57

6.34 Survival Curve: Kaplan-Meier Estimate (pf-dur and client-dur groups). . . 58

6.35 Lift and Gain: RSF. 59

6.36 Brier-score: Monthly. 60

6.37 Survival Curve: Random Survival Forest (RSF) and KM Estimates. 61

6.38 Elbow method: Sum of squared distances. 62

6.39 Clusters: KMeans (k=4) for top four features. 63

6.40 Survival Curve: Top four features (with clusters). 64

6.41 Case-study: Number of customers lost (Monthly time windows). 65

C.1 Lift and Gain Charts: hyper-parameter search for RUS (sampling_strategy) 75

C.2 C-score and Brier-score: hyper-parameter search for RUS (sampling_strategy) 75

C.3 Lift and Gain Charts: hyper-parameter search for ROS (sampling_strategy) 76

C.4 C-score and Brier-score: hyper-parameter search for ROS (sampling_strategy) 76

C.5 Lift and Gain Charts: hyper-parameter search for SMOTE-NC (sampling_strategy) 77

C.6 C-score and Brier-score: hyper-parameter search for SMOTE-NC (sampling_strategy) 77

C.7 Lift and Gain Charts: hyper-parameter search for SMOTE-NC (k_neighbors) 78

C.8 C-score and Brier score: hyper-parameter search for SMOTE-NC (k_neighbors) 78

C.9 Lift and Gain Charts: hyper-parameter search for CPH (n_alphas) 80

C.10 C-score and Brier-score: hyper-parameter search for CPH (n_alphas) 80

xi

C.11 Lift and Gain Charts: hyper-parameter search for GBSurv (dropout_rate) . 81

C.12 C-score and Brier-score: hyper-parameter search for GBSurv (dropout_rate 81

C.13 Lift and Gain Charts: hyper-parameter search for GBSurv (learning_rate) . 82

C.14 C-score and Brier-score: hyper-parameter search for GBSurv (learning_rate) 82

C.15 Lift and Gain Charts: hyper-parameter search for GBSurv (max_depth) . . 83

C.16 C-score and Brier-score: hyper-parameter search for GBSurv (max_depth) . 83

C.17 Lift and Gain Charts: hyper-parameter search for GBSurv (n_estimators) . 84

C.18 C-score and Brier-score: hyper-parameter search for GBSurv (n_estimators) 84

C.19 Lift and Gain Charts: hyper-parameter search for RSF (min_samples_leafs) 85

C.20 C-score and Brier-score: hyper-parameter search for RSF (min_samples_leaf) 85

C.21 Lift and Gain Charts: hyper-parameter search for RSF (min_samples_split) 86

C.22 C-score and Brier-score: hyper-parameter search for RSF (min_samples_split) 86

C.23 Lift and Gain Charts: hyper-parameter search for RSF (max_depth) 87

C.24 C-score and Brier-score: hyper-parameter search for RSF (max_depth) . . . 87

C.25 Lift and Gain Charts: hyper-parameter search for RSF (n_estimators) . . . 88

C.26 C-score and Brier-score: hyper-parameter search for RSF (n_estimators) . . 88

C.27 Lift and Gain Charts: hyper-parameter search for GDBoost (n_estimators) . 89

C.28 Lift and Gain Charts: hyper-parameter search for GDBoost (learning_rate) 89

C.29 Lift and Gain Charts: hyper-parameter search for GDBoost (max_depth) . 92

xii

List of Tables

4.1 Explanatory and target features naming scheme 19

4.2 Class imbalance summary . 20

5.1 Experiments: Degrees of Freedom (DOF), Experiment Name and Description 33

6.1 Best Class imbalance hyper-parameters (study.sampler.s1) 35

6.2 Class Imbalance: Final recommendation. 39

6.3 Survival Targets: Init-durs values. 39

6.4 Survival Targets: End-durs values . 43

6.5 Survival Targets: granularity values . 46

6.6 Survival Targets: Final recommendation . 49

6.7 Model hyper-parameters (study.model.s2) . 49

6.8 Train Sample size values: study.model.s3. 53

6.9 Modeling: Final recommendation . 55

6.10 Case-study: Survival parameters (Class Imbalance and Modeling) 56

6.11 Case-study: Survival parameters . 59

6.12 Case-study: C-score and Integrated Brier-score 59

6.13 Case-study: Top four features (Feature permutation) 61

6.14 Case-study: Top four features description 62

6.15 Number of customers lost: Monthly time windows 64

6.16 Case-study: Expected Loss . 65

A.1 Variable Group Description . 72

B.1 Class Imbalance and model class naming . 73

C.1 study.sampler.s1: Class imbalance hyper-parameter search parameters . . . 74

C.2 study.sampler.s1: Fixed parameters . 74

C.3 study.sampler.s2: Fixed parameters . 79

C.4 study.survivalfeats.s1: Fixed parameters . 79

C.5 study.survivalfeats.s2: Fixed parameters . 90

xiii

C.6 study.survivalfeats.s1 and s2 (granularity): Fixed parameters 90

C.7 study.model.s1: Models hyper-parameter search space 91

C.8 study.model.s1: Fixed parameters . 91

C.9 study.model.s2: Fixed parameters . 92

C.10 study.model.s3: Fixed parameters . 93

C.11 Final Recommendation . 93

xiv

List of Listings

5.1 Experiment: yaml configuration file example 32

xv

Glossary

censored An observation whose we do not know the true survival time. 7, 13,

14, 16, 30, 65

Censoring Happens when we do not know the true survival time for an observa-

tion. There are three types of censoring. The one we are interested,

right censoring, occurs when an observation does not experience an

event before the end of the survival study. 7, 8, 11, 12, 14, 16

churn A metric that represents the number of customers that have stopped

using a product or service during a given period of time. vi, 1, 2, 3,

4, 5, 7, 9, 11, 12, 18, 19, 20, 21, 22, 23, 26, 29, 30, 31, 36, 51, 55, 56,

57, 58, 62, 63, 64, 65, 66, 72

churn-dur The time value, in months, when the customer churns. xvi, 28, 29,

30, 32, 41, 45

client-dur The time value, in months, since the customer signs a contract with

NOS. xi, 28, 29, 30, 40, 46, 57, 58

duration The time difference between the beginning of an observation till an

event happens, or until the survival study is over. xvi, xvii, 11, 14,

29, 30, 55, 66

end-dur The end time value, in months, of the survival study duration. 29,

30, 43, 44, 45, 47, 48, 55, 59

event An experience of interest, such as death, disease occurrence or, in

our case, a client leaving a service. 9, 11, 12, 13, 14, 18, 26, 29, 30,

31, 32, 41, 44, 47, 48, 52, 55, 56, 60, 63, 65, 66

granularity Aggregates churn-dur values into time bins (e.g. daily or weekly

bins). xiii, 30, 33, 40, 44, 45, 46, 48, 55

xvi

Hazard function A function that represents the potential risk of having an event given

that the observation has survived up to time t. 12, 13

init-dur The start time value, in months, or feature of the survival study

duration. 30, 39, 40, 41, 46, 47, 48, 55

lift-dur The time value, in months, to consider a customer churned (for the

computation of the lift and gain metrics). x, xi, 31, 32, 33, 36, 37, 39,

40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 55, 58, 59

pf-dur The time value, in months, until the customer ends the binding

period. Negative values indicate a customer that has already ended

the binding period. xi, 28, 29, 39, 46, 57, 58, 61, 62

Survival function A function that gives the probability of an observation surviving

longer than some specific time t. 12, 13

xvii

Acronyms

AdaBoost Adaptive Boosting 4

AUC Area under the ROC Curve 6

BP Binding period 1

CHF Cumulative Hazard function 4, 12, 13, 15, 16

CNN Condensed Nearest Neighbors 9

CPH Cox Proportional Hazards 4, 5, 8, 13, 50, 52, 53, 55

CRM Customer relationship management vi, 4, 7

DBSCAN Density-based spatial clustering 6

DBSMOTE Density-Based SMOTE 6

DECO The Portuguese Association for Consumer Protection 1

DOF Degrees of Freedom xiii, 26, 27, 31, 32, 33, 35, 39, 43, 45, 46, 48, 55, 66

DT Decision Trees 4, 6, 15

GAN Generative Adversarial Network 6

GBoost Gradient Boost 16, 17, 31, 50, 53

GBSurv Gradient Boosting for Survival Analysis 17, 50, 51, 53, 55

IBS Integrated Brier-score 8, 9

KM Kaplan-Meier 3, 4, 8, 12, 13, 57

KPI Key Performance Insights vi

NA Nelson-Aalen 3, 4, 12, 16

OOB Out-Of-Bag 16

xviii

PH Proportional Hazards 5, 13

ProWSyn Proximity Weighted Synthetic Oversampling 6

RF Random Forests 4, 15

RMSE Root of the Mean Squared Error 7

ROC Receiver operating characteristic period 3

ROS Random Oversampling x, 6, 9, 10, 36, 38, 39, 40

RSF Random Survival Forest xi, 4, 5, 15, 50, 51, 53, 55, 59, 60, 61

RUS Random Undersampling x, 5, 6, 9, 10, 36, 38, 39, 40

SMOTE Synthetic Minority Over-Sampling Technique x, 6, 10, 11, 29

telecom Telecommunications 1, 2, 66

XGBoost eXtreme Gradient Boosting 4

xix

1

Introduction

1.1 Problem

Customer churn is defined as an event in which a customer leaves a service. This is a ma-

jor problem in service oriented companies, as losing a client is substantially more costly

than retaining or getting new ones [39]. In the case of Europe and the US, churn costs

Telecommunications (telecom) operators more than US$4 billion per year [18]. Further-

more, clients with high churn rates (more than 30% per year), do not have any financial

return for new customers, since it takes, on average, three years to recover the acquisition

cost.

Churn can be divided into two categories: voluntary and involuntary (most com-

monly known in the literature as churn by payment default). In voluntary churn, a client

formally leaves the company by terminating his/her contract, whereas in involuntary

churn, the company has the final decision in terminating the contract, usually because of

continuous payment failure. The main focus of this work was in voluntary churn. The

decision to leave a company can be attributed to many factors such as bad or delayed

customer support, poor service quality or competition offering better deals. Furthermore,

this problem is exacerbated when a customer shares a bad experience with relatives or

friends. This is verifiable by looking at the rise in complaints telecom companies receive.

In Portugal, The Portuguese Association for Consumer Protection (DECO), has reported

that telecom complaints have risen 30% in 2020, and are at the top of complaint rankings

for 13 years [40]. Another important factor that can have a negative impact on churn

rates is changes in the Binding period (BP) terms by the Portuguese government [38]. By

changing BP terms (e.g. new customers not having to comply with a loyalty period) churn

rates are expected to increase due to a generalized rise in service price (including entry

costs), worse service quality and reduced mobility between customers and the service

providers.

1

CHAPTER 1. INTRODUCTION

1.2 Motivation

The problem of customer churn has a major negative impact on a company’s revenue.

This impact can be attributed to direct and indirect costs when a client churns. Direct

costs include loss of recurring revenue, that is, the company will stop receiving the client’s

annual/monthly subscription fees. Indirect costs include the cost to acquire new clients,

which are usually much more expensive than retaining existing ones [39], and also the

loss of expansion opportunity revenue, that is, the opportunity that a company has to

upsell an existing customer. In [39], the author gives some important facts about the costs

of churning: 1) It costs five times more to acquire a new costumer than it does to keep a

current one; 2) It costs sixteen times more to bring a new costumer up to the same level

as a current one. Furthermore, as per [39], a small 2% increase in customer retention can

lower cost by as much as 10 percent, and lowering customer churn rate by five percent can

increase a company’s profitability by 25 to 125 percent. For the aforementioned reasons,

it is crucial for companies to be proactive by actively identifying potential churners and

creating effective retaining campaigns. Knowing the reason(s) that lead a customer to

be a potential churner can give the company powerful insights on what is lacking in

their service, thus allowing for targeted improvement. This and being able to effectively

predict a customer’s churn risk over time, is the reason why time-to-event models were

chosen over classifiers as the modeling framework in this dissertation.

1.3 Objectives and Strategy

The objective in this work is twofold: First, to identify potential churners and when they

are most likely to churn; Second, to gain additional insights on the main reasons that

lead a customer to churn. By leveraging this information, the company can adequately

allocate resources to retain these customers, and also to improve their own service, which,

in return, will translate into more profits.

The work will be done with NOS, a leading Portuguese telecom and media company

that provides phone, television and internet services. NOS currently uses a binary clas-

sifier to predict whether a client churns or not in a pre-determined time window. Even

though this model has proven to be useful in NOS context, it is unable to predict time-to-

event, which means that the model needs to be retrained for each time window. Linear

regression can be used to predict the time-to-event, however, as the large majority of cus-

tomers have not churned yet, they cannot be used in the model, resulting in huge losses

of data. We will go one step further, and use a group of models that allow customers that

have not churned yet whilst being able to predict their churn risk over time, by using

survival models. With a survival model, we look to make improvements on NOS current

approach, not only by offering richer predictions, such as customer’s risk over time, but

also by solving the problem of having to use multiple classification models to analyze

different time windows.

2

2

State of the Art

Since customer churn has a big impact on a company’s total revenue, there has been a lot

of effort made, both in the industry and in academia, in accurately predicting potential

churners and understanding what led them to take that decision. The first survival

models were based on statistical methods such as the Kaplan-Meier (KM) estimator for

predicting survival curves and Nelson-Aalen (NA) estimator for hazard ratios. With

advancements in computing power, machine learning and advanced survival models

have been increasingly researched and used in the context of churn prediction.

2.1 Metrics

Accuracy is one of the most popular metrics when it comes to evaluating the performance

of a model. However, since churn prediction datasets are highly imbalanced for the

minority class, the use of accuracy is not advisable. For example, in a dataset where we

have 10 churners and 990 non churners, if we classify every observation as non-churned,

we will have 99% accuracy, which would be misleading. For this reason, the metrics

used should not depend on the number of true negatives. Furthermore, metrics should

be appropriate in the context of survival analysis, since that is the class of models being

implemented in this dissertation.

As seen in most survival analysis papers, the concordance index (C-score) [32] is

almost always used as an evaluation metric, mainly due to its interpetability [27]. C-

score has the advantage of being similar to accuracy and Receiver operating characteristic

period (ROC), but without suffering from the same data imbalance problem, since it does

not depend on False Negatives. Furthermore, C-score only depends on the rank order of

the predictions, making it a very useful metric for evaluating proportional hazard models.

Another popular metric in the context of survival analysis is the Brier-score, which not

only measures the discriminative power of a survival model, but is also used to calibrate1

it [10]. For the comparison of survival curves, the log-rank test is usually the preferred

1Calibration performance measures the similarity between the observed probabilities and the ones pre-
dicted by the model, whilst descriminative performance refers to the ability of the model predicting the right
order of events [27]

3

CHAPTER 2. STATE OF THE ART

statistical test. In survival trees, nodes are usually split using the log-rank statistic as a

dissimilarity measure [19]. And finally, the lift and gain evaluation metric [33] measures

how well a model performs when compared to random guessing. Even though these last

two metrics are not usually used in the context of survival analysis, we will include them

due to its utility in CRM retention strategies.

2.2 Models

Several types of churn prediction models have been researched and developed along the

years. Most of the models used in industry fall under the domain of binary classifiers,

where the objective is to predict whether a client will churn in a pre-determined time-

window. Regression models are seldom used because of censoring, and since most people

are censored, a substantial percentage of the data would be excluded from the analysis.

Other than regression, time-to-event models allow for both continuous survival predic-

tion and censoring. This section will give an overview of some of the most commonly

used models in this domain.

Regarding classification models, the most commonly found in the literature for churn

prediction are tree-based algorithms, such as Decision Trees (DT), and its related ensem-

ble methods (Random Forests (RF) and eXtreme Gradient Boosting (XGBoost)). Even

though DT have some desirable properties in the context of churn prediction such as easy

interpetability, they usually fall short when compared with other methods because DT

are very prone to overfit, and thus failing to generalize for data outside of the training

set [13]. RF were developed to tackle this problem [2], by using an ensemble of DT instead

of just one. By averaging over several DT, and combining random bootstrap sampling

and random feature selection in each tree, RF are able to significantly reduce overfitting

and thus improve predictive performance [2]. Boosting methods are another class of

ensemble methods that are widely used in churn prediction problems, mainly Adaptive

Boosting (AdaBoost) and XGBoost. The latter is currently being used in NOS’s voluntary

churn prediction pipeline.

Even though classification models are able to produce satisfactory results, they are

limited to discrete predictions, meaning that they need to be trained for each desired

time-window. Time-to-Event models solve this problem whilst allowing customers that

have not churned yet, making it an interesting approach to take in the context of churn

prediction. This interest is proven by the increasing number of published papers using

survival models to predict churn risk, including [26, 14]. Besides univariate methods such

as the KM and NA estimators, the most used survival method is the Cox Proportional

Hazards (CPH) model [30]. This methods uses a linear combination of features with a

baseline hazard function to make estimates of the Cumulative Hazard function (CHF).

However, CPH has several limitations, namely its proportional hazards assumption and

its inability to deal with non-linear relationships between covariates. Alternative survival

models such as RSF are better suited to handle these non-linear relationships and, at the

4

2.3. DEALING WITH CLASS IMBALANCE

same time, not depend on the Proportional Hazards (PH) assumption [16]. Due to its

flexibility and predictive performance, RSF are usually used as a benchmark model in

state of the art survival methods.

In [17], the authors improve on the linear CPH model by replacing the relative risk

function with a neural network architecture, denoted by DeepSurv. This solution was

shown to have better performance in regards to the C-score, in both linear and non-

linear experiments, when compared to CPH and RSF. Another solution, denoted by

DeepHit [23], uses a neural network to estimate the probabillity mass function of the

survival time and event. DeepHit was shown to perform better than CPH, RSF and

DeepSurv with regards to the C-score. The authors in [22] propose a neural network

model that uses a novel loss function that has the advantage of being scalable to big

datasets, which enables the fitting of both a PH extension of the Cox model, and a non-

proportional extension. Measuring the model’s performance with regards to the C-score

and the Brier-score, the non proportional extension has better performance in almost

all the tests performed by the authors when compared to other state of the art models,

such as RSF, DeepSurv and DeepHit. A Recurrent Neural Network survival solution

denoted by RNN-Surv was proposed in [11], and has the advantage of being able to

leverage relationships between variables in different timesteps, which can be interesting

in the context of churn prediction. The authors show that RNN-Surv performs better

with regards to the C-score when compared to CPH, DeepSurv and RSF.

2.3 Dealing with Class imbalance

In [35], the author suggests six classes of problems that arise when when working with

imbalanced data, such as improper evaluation metrics, lack of data, relative lack of data,

data fragmentation, inappropriate inductive bias and noise. Approaches to deal with this

range from using appropriate metrics (as seen in Section 2.1) to sampling techniques and

cost sensitive learning. Another important aspect is how to deal with noisy data, which

tends to negatively affect how the model performs. Interestingly, this effect is greater

in instances from the minority class [5]. Noisy data can be dealt with more advanced

sampling methods that are able to selectively remove/add examples, or combine under-

sampling with over-sampling such as CUBE [31].

In Cost-sensitive learning, the cost of misclassifications is taken into consideration,

treating different misclassifications differently [5]. Cost-sensitive learning can be divided

into two categories, the first one being to design classifiers that are cost-sensitive by

nature, that is, the cost is introduced in the error function of the learning algorithms.

The second one is converting cost-insensitive classifiers into cost-sensitive ones, without

modifying them, for example, by introducing weights in certain instances and using those

weights in the total classification error.

Regarding sampling techniques, let us start with a naive approach named random

sampling. In RUS, randomly sampled observations are taken out of the dataset; the idea is

5

CHAPTER 2. STATE OF THE ART

that since many observations from the majority class are redundant, then removing them

at random will not affect the variable distribution too much. In ROS, the minority class

is randomly sampled with replacement until both classes have the same frequency, or a

pre-defined ratio. However, since examples from the minority class are being repeated,

the risk of overfitting increases. Tomek links [15] improve on RUS by creating a rule to

find pairs of instances considered to be noisy or overlapping, thus making them more

suitable to be removed.

SMOTE, improves on ROS by making it possible to generate new synthetic examples

that are close, in feature space, with observed instances. In [6], the authors show a clear

improvement in performance when using SMOTE instead of ROS. This is most likely due

to random oversampling’s replication process, which yields smaller and more specific

decision regions. However, SMOTE does not consider the majority class observations

when generating new ones, which results in overgeneralized examples if there is a strong

overlap between classes. Safe-Level-SMOTE [4] improves on SMOTE by assigning each

positive (minority class) observation a weight, called safe-level, before generating new

examples. The objective is to position each new synthetic instance closer to the largest

safe-level, resulting in instances that are created mostly in safe-regions. The authors show

that Safe-Level-SMOTE outperforms SMOTE in regards to precision and F-value, when

the new synthetic examples are applied in DT. Density-Based SMOTE (DBSMOTE) [3],

is another technique that improves on SMOTE, but this time by using the concept of

Density-based spatial clustering (DBSCAN) to generate minority class clusters of arbi-

trarily defined size. DBSMOTE then uses the shortest path between each minority class

observation to the center of mass of the clusters to generate new synthetic examples. The

experimental results in [3] show that, for unbalanced datasets, DBSMOTE performs bet-

ter than SMOTE and Safe-Level-SMOTE when it comes to accuracy, F-measure and Area

under the ROC Curve (AUC). Another technique that improves on SMOTE is Proxim-

ity Weighted Synthetic Oversampling (ProWSyn) [1]. This method also adds weights to

the minority class examples, but in this case, by a ranked proximity level, where lower

proximity instances have an higher weight. In [20], the author shows that, among state-of-

the-art oversampling techniques, that ProWSyn is one of the best performant techniques.

An interesting class imbalance technique is the application of conditional Genera-

tive Adversarial Network (GAN) to generate new synthetic examples [8]. By using this

technique, the authors showed that after the network training is complete, their method

has superior performance when compared with other state of the art oversampling tech-

niques, such as SMOTE, ADASYN and Borderline SMOTE. In [36] the author states that,

combining an undersampling technique with an oversampling technique, can improve

the performance of the predictive models when compared to either model alone. In this

case, the oversampler SMOTE was combined with the undersampler Tomek-Links.

6

3

Methodology

In this chapter we present the models and techniques that are of most interest for the

strategy defined in Section 1.3. We will also provide a description of the model used as

benchmark. Most of these topics were already presented in the literature review presented

in Section 2.

3.1 Metrics

The evaluation of churn prediction models is treated in a different way when compared

to other models. The main reason being the disproportional amount of non-churners

when compared to churners. This class imbalance makes metrics such as accuracy not

suitable for the churn problem. Furthermore, the presence of censored events in the data

makes standard evaluation metric, such as the Root of the Mean Squared Error (RMSE)

and R2 not suitable in the context of survival analysis. There exist several specialized

evaluation metrics of survival analysis such as the Concordance index, or C-score, and

the Brier-score. Other metric suitable in the context of the churn problem, and often used

in CRM departments, is the lift and gain charts.

Concordance Index (C-score): Unlike accuracy metrics, the C-score evaluates how well

the rank order of the predictions match the true outcomes, and is defined as the ratio

between concordant pairs and the total number of comparable pairs [32]. Let (i, j) be a

comparable instance pair, ti and tj the respective observed times and s(ti), and s(tj) the

predicted survival times. A pair is either concordant or discordant if,

ti > tj & s(ti) > s(tj) ,pair (i,j) is concordant

ti > tj & s(ti) < s(tj) ,pair (i,j) is discordant

It is important to note that not all instances are comparable, that is, a pair (i, j) is compara-

ble only if both instances are uncensored, or if the observed event time of the uncensored

instance is smaller than the Censoring time of the censored instance [34]. The C-score

7

CHAPTER 3. METHODOLOGY

is computed in different ways depending on whether we have or not predicted survival

times. In the former case, the C-score is given by:

c =
1
n

∑
i:δi=1

∑
j:ti<tj

I
(
s(t̂i) < s(t̂j)

)
(3.1)

where I is the indicator function (1 if the argument is true, 0 otherwise), s(t̂i) is the

predicted survival probability of instance i, and n is the total number of comparable

pairs. In the case that the output of the model is an hazard ratio, such as in the case of

the CPH model, then the C-score is given by:

c =
1
n

∑
i:δi=1

∑
j:ti<tj

I
(
xi β̂ > xj β̂

)
(3.2)

where β̂ is the set of estimated parameters from the CPH model. The c-index ranges from

0 to 1, being 1 a perfectly ordered set of predictions and 0.5 random guessing.

Brier-score: Is a method used to measure the overall performance of a model. In the

case of survival analysis, the Brier-score is used to measure the accuracy of the predicted

survival function at a given time t. Let yi(t) be 0 if the observation is a non-event at time t

and 1 if it is an event, and ŷi(t) be the predicted survival probability, then the Brier-score

is given by:

BS(t) =
1
n

n∑
i=1

(ŷi(t)− yi(t))2 (3.3)

where n is the total number of observations. By looking at (3.3), we can intuitively say

that a model has better performance if its score is closer to 0. We can also deduce that

for a random model, that is, a model that always predicts 0.5 for all instances, results

in a Brier-score of 0.25. Nevertheless, the above expression only works for datasets that

do not contain censored observations. In order to allow for Censoring, it is necessary to

weigh each squared distance:

wBS(t) =
1
n

n∑
i=1

wi(ŷi(t)− yi(t))2 (3.4)

the weights wi can be estimated by several methods [34]. In the case of the Brier-score,

we compute the weights based on the censored distribution G, which can be estimated

with the KM estimator:

wi(t)

δi/G(yi) ,if yi ≤ t

1/G(yi) ,if yi > t
(3.5)

where δi is the binary indicator for censored observations (δi = 1 when an instance is non-

censored, and 0 otherwise). Additionally, we can also compute the Integrated Brier-score

8

3.2. DEALING WITH CLASS IMBALANCE

(IBS) [12], which provides an overall calculation of the model’s performance within event

time points tmin ≤ t ≤ tmax. The IBS is defined as:

IBS =
∫ tmax

tmin

BSc(t)dw(t) (3.6)

where w(t) = t/tmax represents the weighting function. The integral is approximated

using the trapezoidal rule.

Lift and Gain: Is an evaluation metric that measures how well a predictive model is able

to correctly classify observations against random guessing. Lift compares the true ratio

of churn and the prediction churn ratio, meaning that a good model should have a high

correlation between both ratios. The basic idea is to sort the population by percentage of

churn, create equally spaced subsections, such as deciles, and then compute the true ratio

of people that churned in each group and compare it to the respective predicted survival

ratio [5]. The Lift score can be obtained by:

Lif t =
P recision
P /(P +N)

(3.7)

where P = T P + FN , N = TN + FP and P recision =
T P

T P +FP
. After this, we can plot the

lift scores for each subsection. We can also use the accumulated lift scores to plot the

gains chart, and then compare it against a random guessing model, or baseline model.In

a gains chart, the greater the distance between both curves, the better the model.

3.2 Dealing with class imbalance

As churn rates are usually very low, the ratio between the churned and non-churned

classes is also very low, resulting in an imbalanced dataset. From the methods discussed

in Chapter 2, five potential candidates were chosen to handle class imbalance in NOS

voluntary churn dataset.

Random sampling: One of the simplest strategies to handle imbalanced data is random

sampling. Random sampling can take two forms: ROS, where random observations from

the minority class are added to the training data; and RUS, where random observations

from the majority class are removed from the training dataset. Both approaches are

repeated till a desired class ratio is achieved. It is important to note that this approach

is only applicable to the training data, as the objective is to improve the fit of a model.

When evaluating the model, the test-data should remain in its original size. Figure 3.1

shows an illustration of the RUS and ROS techniques.

Tomek-Links: Is a popular undersampling method that originated from the Condensed

Nearest Neighbors (CNN) method. Unlike CNN, where examples are removed randomly,

9

CHAPTER 3. METHODOLOGY

Original dataset Randomly Undersampled
dataset

Original dataset Randomly Oversampled
dataset

Figure 3.1: Class Imbalance: RUS and ROS illustrations.

Tomek-links uses a rule to find pairs of instances, one from each class, such that they have

the smallest Euclidean distance between each other in feature space. Let a and b be two

instances from different classes in a binary classification problem. These instances define

a Tomek link if:

1. The nearest neighbor of instance a is b

2. The nearest neighbor of instance b is a

Tomek links

Figure 3.2: Class Imbalance: Tomek-links illustration.

These pairs are valuable as they can either define a class boundary or noise [15]. By

using Tomek-links we can clean up any overlap between classes by removing either only

the majority class instance from the pair, or both instances. This should lead to a better

classification model performance. This model is also often used in combination with an

oversampler, such as SMOTE, to improve model performance.

SMOTE: Unlike ROS, SMOTE approach is to generate new synthetic examples that are

similar to the minority class examples [6]. Simply put, SMOTE generates new examples

along line segments that join k nearest neighbors of the minority class. The algorithm

10

3.3. SURVIVAL ANALYSIS

works as follows: First we choose a random example from the minority class and compute

the difference between the sample’s feature vector and its nearest neighbor. Second, we

generate a random number between 0 and 1, multiply it by the previously computed

difference, and add this value to the chosen sample. By doing this, we select a random

point along the line between the two minority class examples, effectively generating a new

synthetic examples. This process can be repeated many times along the lines between the

k nearest neighbors. Figure 3.3 illustrates the process:

Synthetic examples

Minority class examples

Figure 3.3: Class Imbalance: SMOTE illustration.

3.3 Survival Analysis

Survival analysis is a set of statistical methods where the outcome variable of interest is

the time it takes until an event happens. Unlike regression models, in survival analysis

we can consider observations with events that have not happened yet to be included

in the analysis. This is called Censoring. In this section we will begin by presenting

the necessary survival analysis concepts that are needed to understand the techniques

presented next.

3.3.1 Fundamental concepts

We will begin by defining what is an event. An event is an experience of interest, such as

death, disease occurrence or, in our case, a client leaving a service. duration is the time

difference between the beginning of an observation till an event happens, or until the

survival study is over [19]. In the case of churn prediction, duration can be defined as the

time from when a customer signs a contract (or any other date) until he leaves (churns) or

the survival study period is over. It is important to note that some companies, including

NOS, have a binding period when a customer first signs a contract that forbids the client

from leaving the service. Whether we should include or not this period in our analysis is

up to debate, and will be something that will be analyzed in the next sections. Censoring

happens when we do not know the true survival time for an observation. There are three

11

CHAPTER 3. METHODOLOGY

types of Censoring, however, in this work we will only focus on right Censoring since

that is the only one applicable in churn prediction. Right Censoring occurs when an

observation does not experience an event before the end of the study [19]. In the case of

NOS, Censoring happens when the customer has not churned when the survival study is

over.

Apart from the concepts presented above, there are two curves that are of most interest

in survival analysis. The first one is called the Survival function, S(t), and is a function

that gives the probability of an observation surviving longer than some specific time

t [19]. Let T be a continuous random variable, then the survival function is given

by S(t) = P (T > t). The second one is called Hazard function, h(t), and represents the

potential risk of having an event given that the observation has survived up to time t:

h(t) = lim
δt→0

P (t < T ≤ t + δt|T ≥ t)
δt

(3.8)

Technically speaking, the hazard does not represent a probability because we are dividing

by a time interval, so it is a rate instead. However, if we consider this rate to be instanta-

neous, we can say that the hazard represents the probability of an observation that has

not had an event up until time t, to have an event at that time. Hazard is also known as

the Hazard rate. The hazard rate is integrated over time to get the CHF:

H(t) =
∫ t

0
h(u)du (3.9)

The CHF (H(t)) can be interpreted as the total amount of risk accumulated up until time

t [7], and can be thought as the number of expected events over a period of time. The

Survival function, CHF and Hazard ratio can all be determined based on one another:

S(t) = exp{−H(t)} (3.10)

F(t) = 1− exp{−H(t)} (3.11)

f (t) = h(t)exp{−H(t)} (3.12)

where F(t) = P (T ≤ t) is the probability of an event happening before time t. The Survival

function and Hazard rate are estimated with the KM and NA estimators, respectively.

3.3.2 Statistical Methods

Survival Analysis statistical methods can be divided into three classes: Non-parametric,

semi-parametric and parametric [7]. Non-parametric methods are the most commonly

used of the three because we usually do not know the underlying distribution of survival

times, however, it is also the one that yields the most inaccurate estimates. In Semi-

parametric models, the distribution of the outcome remains unknown, however, the

regression parameters are known. The non-parametric estimate of the Hazard function

makes this class of models much more flexible than parametric approaches. And lastly,

12

3.3. SURVIVAL ANALYSIS

in parametric models, we assume that the outcome follows a known distribution, such

as the Weibull, exponential or log-normal distributions. Since we are estimating fewer

parameters, parametric models offer several advantages if we do indeed choose the right

outcome distribution, such as more accurate survival times and easier interpretation of

the model. In the case of our dataset, since we are unable to accurately identify a distri-

bution for the outcome, non-parametric and semi-parametric approaches are preferred,

and these are the ones that will be presented next.

Kaplan-Meier Estimator (KN): Is a non-parametric method for estimating survival

curves. This estimator uses the durations of each observation to estimate the survival rate

at each point in time [7]. Given T1,T2, ...,Tn i.i.d. survival times with Survival function

S(t). The KM estimate for time t, Ŝ(t), is given by:

Ŝ(t) =
∏
j:Tj<t

(
1−

dj
rj

)
(3.13)

where dj represent the number of events at Tj , dj is the number of censored observations

between Tj and Tj+1 and rj is the number of individuals at risk before the jth event, and

is given by rj = rj−1 − dj−1 − cj−1 It is important to note that the observations should be

ordered from the shortest to the longest.

Nelson-Aalen Estimator (NA): Is another non-parametric estimator, which is used to

estimate the CHF for right censored data [34]. The estimate of the Hazard function at

time t, Ĥ(t), is given by:

Ĥ(t) =
∑
tj≤t

dj
rj

(3.14)

where dj is the number of deaths at time tj , and rj is the number of individuals at risk at

tj .

Cox Proportional Hazards model (CPH): Is a semi-parametric regression model used

to investigate the correlation between survival time and one or multiple covariates [30].

Furthermore, CPH also provides the effect that each predictor has on the output, which is

important for model interpretability. This model is based on the PH assumption, which

means that every observation’s Hazard function is the same (same shape), but with a

different scaling factor. For example, given two independent observations a and b, the

Hazard function of a is given by:

ha(t) = Chb(t) (3.15)

where C is the scaling factor. There are two major takeaways from this assumption, the

first being that there is a baseline Hazard function, and so all other hazards can be derived

13

CHAPTER 3. METHODOLOGY

from the product between the baseline and some scaling factor; and the second one being

that the impact variables have over survival times, do not change over time.

Formally, let T be the event time of an observation, which in the case of right-censored

data is given by T = min{T ∗,C∗} where T ∗ is the true event time and C∗ is the Censoring

time (if there is any). Let us also define the D = I{T = T ∗} as an indicator labeling whether

an observed time is an event or a censored observation. We can now define the full

likelihood of censored survival times as:

L =
∏
i

f (Ti |xi)DiS(Ti |xi)1−Di =
∏
i

h(Ti |xi)Diexp[−H(Ti |xi)] (3.16)

where each observation is denoted by i, with covariates xi and observation duration Ti .

Next, let us define the Cox model as per Cox regression:

h(t|x) = h0(t)exp[g(x)], g(x) = βT x (3.17)

where h0(t) is the baseline hazard, exp[g(x)] is the relative risk function, x the covariate

vector and β the parameter vector. We fit (3.17) by, first maximizing the Cox partial

likelihood, which does not contain the baseline hazard. Next, the non-parametric baseline

hazard is estimated based on the former operation. The Cox partial likelihood is given

by:

Lcox =
∏
i

(
exp[g(xi)]∑

j∈Ri
exp[g(xj)]

)Di

(3.18)

where the negative partial likelihood is used as a loss function:

loss =
∑
i

Di log

∑
j∈Ri

exp[g(xj)− g(xi)]

 (3.19)

The cumulative baseline hazard function can be estimated using the Breslow estimator.

Ĥ0(t) =
∑
Ti≤t

[
∆Ĥ0(Ti)]

]
(3.20)

∆Ĥ0(Ti) =
Di∑

j∈Ri
exp[ĝ(xj)]

(3.21)

where ĝ(x) = β̂T x. After fitting the model, both the estimated baseline function and the

parameters β can be inspected. By exponentiating these parameters, we obtain the hazard

ratio between two groups. For example, if this ratio is bigger than 1, then the positive

class has a lower hazard when compared, which means a longer median survival time

when compared to the negative class. And finally, the survival function of the Cox model

can be estimated with:

Ŝ(t) = exp[−Ĥ0(t)exp[ĝ(x)]] = Ŝ0(t)exp[ĝ(x)] (3.22)

14

3.3. SURVIVAL ANALYSIS

where Ŝ0(t) is the baseline survival function.

3.3.3 Machine Learning

Random Survival Trees (RSF): Ensemble models are built on top of a collection base
learners, and have been empirically proven to substantially improve prediction perfor-

mance. However, base learners need to be sufficiently distinct from each other, otherwise

the model would just overfit as a regular decision tree. Two ways were developed to

tackle this problem, the first one is based on injecting randomness into the samples that

each learner trains on, with bootstrapping and with replacement [2]. The second one

is randomly selecting features on each node split. Combining this randomization with

averaging over the trees, allows a RF to be highly accurate and have low generalization

error. Based on the RF model, RSF is an extension that allows for rightly-censored data

to be included in the analysis. One of the core ideas proposed by RSF is the conservation

of events principle, which is used to define a new type of predicted outcome for survival

data called Ensemble mortality [16]. Ensemble mortality can be interpreted as the ex-

pected total number of events, and is derived from the ensemble CHF1. The RSF model

can be summarized in the following steps:

1. Draw B bootstrap samples from the original data.

2. Grow a survival tree for each bootstrap sample. At each node of the tree, randomly

select p candidate variables. The node is then split using the candidate variable that

maximizes survival difference between daughter nodes.

3. Grow the tree to full size under the constrain that a terminal node should have no

less than d0 > 0 unique deaths.

4. Calculate a CHF for each tree and average them to obtain the ensamble CHF.

5. Using the remaining of the bootstrap data (OOB), calculate the prediction error for

the ensemble CHF.

Just as a regular DT, a survival tree is comprised of decision nodes and end nodes

(called leafs). The top node contains all the data, and the algorithm works by recursively

splitting nodes in a left and right node based on a splitting criterion until a stopping

criterion is met. In the case of survival trees, nodes are split by maximizing the survival

difference between daughter nodes, pushing dissimilar cases apart. The work [16] evalu-

ated four splitting rules based on the log-rank test statistic. In between these, splitting

by maximizing the log-rank test and a standardized log-rank statistic yielded the lowest

prediction error2. The authors also noted that a random log-rank splitting rule, described

1Since we are more interested in predicting survival time, this last metric will not be discussed in this
document. For more information see [16].

2The authors in [16] used the C-score for evaluating the performance of splitting rule.

15

CHAPTER 3. METHODOLOGY

as choosing between random split candidate variables, as being significantly faster than

the other rules whilst having a good performance as well.

When a survival tree reaches saturation, the most extreme nodes, called terminal

nodes, are formed at the end of each tree when nodes break the minimum d0 > 0 unique

deaths rule. Let these nodes be denoted by τ , and let (T1,h,δ1,h), ..., (Tn(h),h,δn(h),h) be the

survival times and the Censoring information (0 for censored, 1 for not censored) in a

terminal node h ∈ τ . Also, define dl,h and Yl,h as the number of deaths and individuals at

risk at time tl,h. The CHF estimate for h is the NA estimator,

Ĥh(t) =
∑
tl,h≤t

dl,h
Yl,h

, (3.23)

where the CHF for observation i with m-dimensional covariate xi is the NA estimator for

xi ’s terminal node,

H(t|xi) = Ĥh(t), if xi ∈ h. (3.24)

In order to compute the ensamble CHF, we average over B survival trees. Let us define

a Out-Of-Bag (OOB) estimate and a Bootstrap estimate. Let us now define Ii,b = 1 if i is

an OOB case for b, otherwise, set Ii,b = 0. Let H ∗b(t|x) denote the CHF for the tree grown

from the bth bootstrap sample. The OOB ensemble CHF for observation i is then given

by:

H ∗∗e (t|xi) =

∑B
b=1 Ii,bH

∗
b(t|xi)∑B

b=1 Ii,b
. (3.25)

Gradient Boosting for Survival Analysis: Boosting algorithms have recently become

popular among data science communities not only because of its ability to find nonlinear

relationships between covariates and target features, but also its ability to deal with

outliers and missing values inside non-cleaned datasets. Gradient Boost (GBoost) [9] is a

flexible boosting framework that allows for the optimization of arbitrary loss functions,

as long as these are differentiable. The main idea behind this ensemble model is the

combination of multiple weak base learners in order to obtain a better model. The base
learners’s predictions are combined in an additive manner in order to give the model’s

final prediction. Formally, given a covariates’s matrix x, a Boosting model is defined as,

F(x) =
M∑
m=1

βmg (x,θm) , (3.26)

where M represents the number of base learners, βm the mth weighting term and g the base
learners parameterized by vector θ. As we can see in Eq. (3.26), a GBoost model is built

sequentially. In these ensemble models, the predictions from the previous base learner
used in the computation of the next one.

16

3.3. SURVIVAL ANALYSIS

Since this framework allows for the use of any loss function, we can use the GBoost

framework for survival analysis by choosing an appropriate loss function. For example,

in this work we use Cox’s Partial likelihood function, Eq (3.19), as the loss function for the

GBoost framework. From now on, we will denominate this model by Gradient Boosting

for Survival Analysis (GBSurv), which uses Cox’s loss function with regression trees as

base learners.

17

4

Dataset and Exploratory Data

Analysis

4.1 Database description

The data used in this dissertation consists of a customer database provided by NOS, and

is updated weekly, with dates ranging from June of 2019 up to June of 2021. The dataset

consists of a single file, which is hosted in the company’s data lake. It can be accessed

and queried using different technologies, namely, HUE [37] to quickly inspect tables and

make queries, and pySpark [42] to query and manipulate data in Python.

The dataset consists of 748 features and several million instances. Features include

date of snapshot, client identifier and type, number of months since the client started a

contract with NOS, number of months until the client’s binding period is over, number

of months until the client churns and other explanatory features. A description of every

feature group is presented in Table A.1 of Annex A.

4.2 Variable Description

Across all the feature groups present in Table A.1, there are three groups that need to be

addressed independently:

Data keys have the date of when the entry was added, and also the client identifier. Entry

date is referred as snapshot, and each snapshot consists of a weekly view of all clients

that have a subscription service that includes TV, which is then appended to the table.

Regarding churn events, the table is updated monthly with a time window, such that

entries within the window will have a churn event inputted (date and duration until the

event).

Target features has information about the churn event, namely the date of the event,

number of months until the event and a binary feature symbolizing whether a client has

churned or not in different monthly time windows.

18

4.3. EXPLORATORY DATA ANALYSIS

Client features have information related to the client. There are two features from this

group that are usually used by NOS to do client segmentation, which, is also relevant to

churn behavior and the way NOS deals with customers from each segment. These two

features are the number of months since the client joined the company (client-dur) and

the number until the binding period (pf-dur) is over.

4.3 Exploratory Data Analysis

Some work has already been done to understand the population in this dataset. The

first thing was identifying which features would be the base of this study, which were

then presented in Section 4.2. It is important to remember that, client features such as

client-dur and pf-dur are not only important because of their impact in customer churn

(as demonstrated in an internal study done by NOS), but also because they offer powerful

business insights by doing a segmentation of these features into different groups of clients.

In order to perform this analysis correctly, the data was cleaned using the filters and data

imputation values used in NOS churn pipeline, which are mentioned in Section 5.3. The

entire dataset was used in this analysis.

Before starting, let us recall what variables will be used in this the exploratory analysis.

Table 4.1 shows a mapping between the original names of the variables (present in some

plots), and the naming scheme used in this dissertation. A brief description of each

variable is also shown.

Table 4.1: Explanatory and target features naming scheme

Name Original Name Description
Snapshot cal_day_dat Date of snapshot

Client Id sa_cod Client Identifier

churn-dur next_voluntary_churn_months_qty Number of months until the client
churns

Churn date next_voluntary_churn_dat Date of the churn event

Churn duration
(discrete)

next_mx_voluntary_churn_flg 1 if the client churned in the next x
months, 0 otherwise

client-dur sa_activation_months (client_born) Number of months since the client
signed a contract with NOS

pf-dur loyalty_end_months_qty (pf_dur) Number of months remaining until
the end of the binding period

It’s important to note that the identifier variables present in Table 4.1 were not used

in the modelling phase of this disseration, such as the Snapshot and the Client ID vari-

ables. The remainder exploratory features were previously selected by NOS, and include

variables related to service usage, package information, outreach from and to NOS and

customer basic information, as presented in the feature groups in Table A.1. Even though

this set of features resulted in good results, as seen in the next section, It’s possible there

19

CHAPTER 4. DATASET AND EXPLORATORY DATA ANALYSIS

exist others that weren’t used during training, and which might improve the model’s

performance.

Checking number of Nulls and invalid instances Firstly it is important to check if any

of the key variables have Null values. Albeit not having any Null values, many of the

numeric features such as client-dur, pf-dur and the target feature churn-dur had some

invalid values, which were then adequately imputed by following Section 5.3.

Checking class imbalance Another important aspect related to this dataset is its class

imbalance problem, so it is fundamental that we measure how imbalanced our data is,

specially for the worst case scenario: one months churners. In order to achieve this, for

each snapshot, we counted the total number of customers that have a Churn duration
discrete (m1) equal to 1 (clients that churned the month after the snapshot was taken),

divided it by the total number of customers in that snapshot, and finally multiplying this

value by 100 to obtain the result in percentage. Table 4.2 shows the average, minimum

and maximum values of the class imbalance between all snapshots.

Table 4.2: Class imbalance summary

Average Min Max
0.60% 0.26% 0.74%

With these values, we can estimate how much we need to balance our dataset using

the techniques shown in Section 3.2 in order to obtain better results. These tests will be

done in the next phase of this dissertation.

Overall churn distribution using the discrete churn variable In this section we want

to study how the churn rate varies along time. Figure 4.1 shows the discrete churn rate

(churn in the next 1-5 months) along snapshots, where m1,m2, ...,mx refers to the number

of churners in the next 1st,2nd, ...,xth months. There are some interesting takeaways from

this plot: First, the rate of churn varies between 0.26% − 0.74% for m1, which is lower

than the average 1.8% monthly churn rate for telecom companies as per [41]. Another

important aspect is that, on average, churn rate does not seem to vary much over time,

and that no sazonal variation was observed. However it is interesting to see that there is

a clear decrease of the churn rate after the Covid19 pandemic started (March of 2020),

which is partially due to some measures imposed by NOS that made it more difficult to

churn during this time, and also because people spent more time at home.

Client Segmentation by client-dur and pf-dur As was said before, both Client age and

PF age present themselves as both important predictors for churn, and are the basis of

a client segmentation that defines different treatments for different customers. Because

of this, both variables were segmented using pre-defined groups used in NOS’s CRM

division. With this segmentation we expect to identify groups of customers that are more

20

4.3. EXPLORATORY DATA ANALYSIS

20
19

-0
6-

26
20

19
-0

7-
03

20
19

-0
7-

10
20

19
-0

7-
17

20
19

-0
8-

07
20

19
-0

9-
14

20
19

-1
0-

29
20

19
-1

2-
14

20
20

-0
2-

02
20

20
-0

3-
14

20
20

-0
4-

27
20

20
-0

5-
30

20
20

-0
7-

12
20

20
-0

8-
26

20
20

-1
0-

17
20

20
-1

1-
21

20
21

-0
1-

09
20

21
-0

2-
21

20
21

-0
4-

06
20

21
-0

5-
27

snap

0.5

1.0

1.5

2.0

2.5

3.0

Ch
ur

n
ra

te

Churn window
m1
m2
m3
m4
m5

Figure 4.1: It is possible to see a drop in the number of churners around the time Covid19
appeared (March 2020). The drop at the end, specially at higher mx is due to the fact that
the churn variables have not been updated yet for dates after 2021-06-06.

prone to churning, which then translates into more adequate client retention strategies

for each one of these groups. Client segmentation was done in the following manner:

pf_dur =



x < 0 ,No PF

0 ≤ x < 6 ,Finishing PF

6 ≤ x < 12 ,Last year PF

x > 12 ,PF

(4.1)

client_dur =


x < 4 ,New

4 ≤ x < 25 ,Recent

x > 25 ,Old

(4.2)

Let us start by counting the number of instance of each group in Figure 4.2. These

counts refer to the average number of clients in each snapshot for all snapshots.

Regarding client-dur, Figure 4.2 shows that the large majority of clients belong to the

Old category, which was to be expected. When it comes to pf-dur, the number of customers

under a binding period is more than double the customers with no binding period. It is

important to note that older clients can re-instate a new binding period when accepting

a new offer from NOS (this binding period is usually 24 months). It is also possible to see

that there is not much difference in each group counts along the snapshots.

Churn count and distribution per client-dur and pf-dur groups After getting the counts

for each group, it is interesting to check if there is any difference in the churn rate in each

21

CHAPTER 4. DATASET AND EXPLORATORY DATA ANALYSIS

Old New Recent
0

200000

400000

600000

800000

1000000

Cl
ie

nt
 C

ou
nt

No PF PF Last year PF Finishing PF
0

200000

400000

600000

800000

Figure 4.2: There is a clear difference in the total number of customers in the Old and PF
groups, for the client age and PF age variables respectively.

group. To do this, let us first check the percentage of churners in each group in Figure 4.3.

This percentage was obtained by dividing the number of customers with a Churn duration
discrete (m1) equal to 1 by the total number of customers in each snapshot, and for each

group.

Old New Recent
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ch
ur

n
pe

rc
en

ta
ge

No PF PF Last year PF Finishing PF
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 4.3: For the client-dur variable, the New group has more churners, as expected than
the other groups, but not much difference overall. In regards to pf-dur, there are three
times more churners in the No PF group than the 2nd group with the most number of
churners, Finishing PF.

It is possible to see that for the client-dur variable, the percentage of churners does

not vary much among the different groups. However, it is curious that the New group is

the one that has the highest amount of churners, when it is known that it is much more

difficult for clients to churn when they are in the binding period. In the case of the pf-dur
variable, it is clear that the No PF group is the one with most amount of churners, which

is not surprising since not only are older customers more prone to churning, but also

because this group has customers that just ended their binding period, which usually it

is a precursor to churn. It is important to note that this information will be used to assess

if it is worth it or not to consider every customer group in the analysis, and also what is

22

4.3. EXPLORATORY DATA ANALYSIS

the gain/loss of predictive power when dropping one of the groups.

Apart from churn counts, it is also interesting to check the churn evolution per client-
dur and pf-dur groups. In order to achieve this, a plot with the churn counts for each

group and for each churn date is presented in Figure 4.4 and in Figure 4.5
20

19
-0

6
20

19
-0

7
20

19
-0

8
20

19
-0

9
20

19
-1

0
20

19
-1

1
20

19
-1

2
20

20
-0

1
20

20
-0

2
20

20
-0

3
20

20
-0

4
20

20
-0

5
20

20
-0

6
20

20
-0

7
20

20
-0

8
20

20
-0

9
20

20
-1

0
20

20
-1

1
20

20
-1

2
20

21
-0

1
20

21
-0

2
20

21
-0

3
20

21
-0

4
20

21
-0

5
20

21
-0

6

0

1000

2000

3000

4000

5000

6000

Ch
ur

n
Co

un
t

Age group
New
Recent
Old

20
19

-0
6

20
19

-0
7

20
19

-0
8

20
19

-0
9

20
19

-1
0

20
19

-1
1

20
19

-1
2

20
20

-0
1

20
20

-0
2

20
20

-0
3

20
20

-0
4

20
20

-0
5

20
20

-0
6

20
20

-0
7

20
20

-0
8

20
20

-0
9

20
20

-1
0

20
20

-1
1

20
20

-1
2

20
21

-0
1

20
21

-0
2

20
21

-0
3

20
21

-0
4

20
21

-0
5

20
21

-0
6

0

1000

2000

3000

4000

5000

Ch
ur

n
Co

un
t

PF group
Last year PF
PF
No PF
Finishing PF

Figure 4.4: Clear drop in the number of churners around the time Covid19 hit (March
2020).

20
19

-0
6

20
19

-0
7

20
19

-0
8

20
19

-0
9

20
19

-1
0

20
19

-1
1

20
19

-1
2

20
20

-0
1

20
20

-0
2

20
20

-0
3

20
20

-0
4

20
20

-0
5

20
20

-0
6

20
20

-0
7

20
20

-0
8

20
20

-0
9

20
20

-1
0

20
20

-1
1

20
20

-1
2

20
21

-0
1

20
21

-0
2

20
21

-0
3

20
21

-0
4

20
21

-0
5

20
21

-0
6

0

1000

2000

3000

4000

5000

6000

Ch
ur

n
Co

un
t

Age group
New
Recent
Old

20
19

-0
6

20
19

-0
7

20
19

-0
8

20
19

-0
9

20
19

-1
0

20
19

-1
1

20
19

-1
2

20
20

-0
1

20
20

-0
2

20
20

-0
3

20
20

-0
4

20
20

-0
5

20
20

-0
6

20
20

-0
7

20
20

-0
8

20
20

-0
9

20
20

-1
0

20
20

-1
1

20
20

-1
2

20
21

-0
1

20
21

-0
2

20
21

-0
3

20
21

-0
4

20
21

-0
5

20
21

-0
6

0

1000

2000

3000

4000

5000

Ch
ur

n
Co

un
t

PF group
Last year PF
PF
No PF
Finishing PF

Figure 4.5: There is a clear drop in the number of churners around the time Covid19 hit
(March 2020).

Figure 4.4 and Figure 4.5 clearly shows the the presence of a drop in the churn count

around the time Covid19 started.

We can also check the churn distribution over the client-dur and pf-dur values to see

if there is any peak values along the features’s values. A Kernel density plot was used to

achieve this by representing the distribution of both variables in regards to churn count.

This plot is presented in Figure 4.6.

Figure 4.6 shows that there is a clear peak in churn density in between a client-dur
value of 20 and 30, which coincides with the usual maximum binding period of 24 months.

It is also possible to observe a clear churn peak when pf-dur equals to 0, which means

that most clients churn after their binding period is over.

23

CHAPTER 4. DATASET AND EXPLORATORY DATA ANALYSIS

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

client_born

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Ch
ur

n
Co

un
t D

en
sit

y

50 45 40 35 30 25 20 15 10 5 0 5 10 15 20

pf_dur

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 4.6: Both variables have a peak in some range of values. In the case of the
client_born variable (client-dur) there is a peak at around 24 months. For the pf_dur
variable (pf-dur) the peak is around the 0 month mark. Both these values represent the
end of the binding period.

24

5

Experimental setup

As a scientific field, data science demands reproducible and statistically validated results

in order to generate knowledge from data. In this chapter we are going to explore each

step of the experimental process used in the context of survival analysis for this disser-

tation, and discuss a newly developed pipeline to make this validation process possible.

Let us begin by discussing the methodology used to validate experiments.

5.1 Time-series validation

Statistical methods are usually used to evaluate and validate the performance of scientific

experiments. In the domain of machine learning, k-fold cross-validation is usually one of

the preferred methods to achieve this. This technique consists of randomly splitting the

dataset into k folds, train a model on all folds except one, and finally test the model on the

remaining fold. These steps are repeated until the model is tested on all folds, and a final

metric given by its average over the k folds. This method has not only the advantage of

robustly validating a model’s performance, but also helps prevent overfitting. However,

since our data is time-series in nature, it is illogical to train a model using values from the

future and test it on past ones, as would naturally happen in randomly selected folds. This

means that there is a temporal dependency between instances, which must be preserved

during the experimental validation. For time-series data, a rolling basis cross-validation

is usually preferred. In this method, we split the data into time-steps, train each one, and

test it with its subsequent steps. For each step, the final score is given by its average over

all the k subsequent steps. Figure 5.1 illustrates this process more intuitively.

Here we split the data into monthly sets, and for each month, given by Train index,

we train a model, and then test it in k subsequent months. The final score for each Train
index is given by the average of its k evaluations. Finally, we can obtain a single score by

averaging over all Train indexes. With this methodology we are not only able to validate

experiments over a single time-step, but also across different steps over time. As we

saw in Section 4.3, each snapshot (or time-step) consists, on average, of at least a million

instances before sampling, which as we will see in Section 6.3.3, grows quadratically

25

CHAPTER 5. EXPERIMENTAL SETUP

1 2 543 6

1

2

3

Months

Train
Index

Train Date

Test Date

Figure 5.1: Rolling cross-validation in a time-series.

in computational fit-time for datasets above a certain size (>50000 samples). As such,

since the dataset size surpasses, on average, this value, the train-set will be split into ’k’

stratified folds (in relation to the churn event survival feature), and a model fitted for

each fold. The final score for each train-test pair is given by the average over all the scores

in each fold. The test set is the same for each fold, and contains all test instances.

5.2 Experimental Pipeline

Based on the cross-temporal validation methodology presented in the previous section,

an experimental pipeline was developed. This pipeline is composed of a set of ordered

steps, which we will denominate as DOF from now on. A visual representation of the

process, is given by Figure 5.2.

Due to time constraints in this dissertation, some assumptions were made about

this process. The most important one being the assumption of independence between

different DOF, that is, each DOF serves as a scaling factor regarding the final evaluation,

and as such, we assume no interaction between them. Formally, given a train-test data

pair as X, split in n folds, and k parameterized DOF as D, the resulting evaluation E is

given by:

Eij =
1
n

n∑
i=0

k∑
j=0

E
(
Dj ,Xi

)
(5.1)

where E(Dj ,Xi) represents the pseudo-contribution that DOF Dj applied to train-test

pair Xi has on the final evaluation Eij . The same assumption is made about DOF that

have hyper-parameters, such as Class imbalance and Modeling. This means that hyper-

parameter tuning was also done independently for each hyper-parameter, and no inter-

action between hyper-parameters was tested. As stated before, both assumptions were

made in order to have results in a timely manner, because validating each and every

26

5.3. DATA PREPARATION

date1 date2

All Data

Data
Preparation

... date.n

sample1
Initial

Sampling sample2 ... sample.n date2

sample1
imb

sample2
imb ... sample.n

imb

sample1
imb
surv

sample2
imb
surv

... sample.n

date2

date2
surv

Class
Imbalance

Survival
Features

model1 model2 ... model.nModeling

eval
Final

pred1 pred2 ... pred.nPrediction

eval1 eval2 ... eval.nEvaluation

Figure 5.2: Experimental pipeline.

possible DOF combination and/or every hyperparameter combination would be too com-

putationally expensive for the scope of this dissertation. Nevertheless, this pipeline is

equipped to combine different DOF if desired. In order to run this pipeline, a Python

script was developed. Each experiment is defined using a yaml configuration file, which

after completed, produces a file with the resulting metrics (and other relevant informa-

tion) for each train-test data pair. These files are then combined and used to produce the

results shown in the next chapter.

5.3 Data Preparation

At the top of the process we have Dataset import, which has its own pipeline. Figure 5.3

shows each step of this pipeline and whether it is done locally with Pandas, or in a

distributed manner with pySpark.

Load Panel: The process begins by loading a panel from the data lake defined in Panel
config, resulting in a train and a test pySpark dataframes. To obtain these, the dataframe

is filtered by a train and a test snapshot dates. Both sets are also filtered so that the

27

CHAPTER 5. EXPERIMENTAL SETUP

Panel config
[yaml]

Null Inputation config
[yaml]

All Data

Feature Selection config
[yaml]

Load panel
[pySpark]

Input invalids as Nulls
[pySpark]

Null Inputation
[Pandas + pySpark]

OneHotEncoding
[Pandas]

Feature Selection
[Pandas]

date1.filt
(train)

date2.filt
(test)

date1.filt.nan
(train)

date2.filt. nan
(test)

date1.filt.inp
(train)

date2.filt.inp
(test)

date1.filt.inp
.enc

(train)

date2.filt.inp
.enc
(test)

date1.filt.inp
.enc.feat

(train)

date2.filt.inp
.enc.feat

(test)

Figure 5.3: Data pipeline: Data loading, Nan Inputation, OneHotEncoding and Feature
selection.

dataframe contains only Consumer type costumers.

Input invalids as Nulls: Next, invalid entries will be inputted as Null, to be replaced by

an appropriate value in the next step. In this dataset, invalid values are given by -9999 or

NaN for numerical features, and as ’-9999’, ’Indefinido’ or Null for categorical ones. It is

important to note that special care must be taken for some variables, namely client-dur,

pf-dur and churn-dur. In the case of client-dur, entries with invalid values were filtered

from the dataset. For pf-dur, this value is capped at 24 since it is the maximum number

of months of binding period a client can have. And finally, invalid entries for churn-dur

were neither inputted as Null nor removed from the dataset, as they simply mean that

the client has not churned yet.

Null Imputation: The resulting Null values are then inputted using a set of rules defined

in the Null inputation config file. These rules were pre-determined by NOS, and consist

of using the median for continuous variables and the mode for categorical ones. During

this step, the distributed datasets are firstly converted to a Pandas dataframe and some

basic statistics taken (average, median, mode, etc) among other basic information about

the train dataset. The values are then used to input Null values. This step is partially

done locally in Pandas to allow for more flexibility.

OneHotEncoding: The inputed train dataset is then fed into a OneHotEncoder from

28

5.4. CLASS IMBALANCE

sklearn to binary encode categories within categorical variables. It is important to note

that these variables can have a large number of categories, which would explode the

dimensionality of the dataset after encoding. To avoid this, before encoding, categories

with a representativity threshold inferior to a certain value (e.g. categories that appear

in less than 1% of the dataset) were converted to a default category. The representativity

threshold used during this work was the same used by NOS, and has a value of 0.1%. The

encoder is fitted on the train dataset, and used in the test dataset to avoid data leakage.

As data is going to be standardized in the next section, resulting in numerical features in

the [−1,1] interval, one-hot encoded categorical variables are mapped to (−1,1) instead

of (0,1) to keep consistency.

Feature Selection: The final step consists of removing features that are not included in

the Feature Selection config file. The features present in this file were generated using NOS

churn prediction pipeline, and calibrated with domain knowledge. Before leaving this

stage, both datasets are standardized using the train-set’s mean and standard deviation

values for each numerical feature.

5.4 Class Imbalance

Albeit being a controversial topic inside machine learning and statistics communities, the

Class balancing techniques shown in Section 3.2 will be experimented and evaluated in

this dissertation as there is a big class imbalance in our dataset, which can, theoretically,

harm our evaluation metrics. Undersampling methods can be applied freely as these only

rely on removing instances. However, oversampling methods that generate new exam-

ples, need more careful consideration. Since some numeric features such as churn-dur,

client-dur and pf-dur are used in the computation of survival features, without proper

care, erroneous values can be generated. In order to avoid such values, any new generated

example with erroneous survival targets will be corrected with respect to Eq. (5.2). It

should be noted that an hybrid class was created based on the combination of the SMOTE

oversampler and the Tomek-links undersampler. The imbalanced methods were imple-

mented using classes from the imbalanced-learn python package [24] and can be checked

in Table B.1.

5.5 Survival Targets

The performance of a survival model is heavily influenced, in terms of evaluation met-

rics, by the choice of its survival targets, duration and event. As stated in Section 3.3,

event indicates whether a customer is censored or not, and duration represents the total

lifetime of a customer. For the event target, firstly we need to specify an end-dur, which

represents a quantity of time (in months), after a snapshot, that we run our hypothetical

29

CHAPTER 5. EXPERIMENTAL SETUP

study. A customer is considered censored (event = 0) if end-dur is greater than churn-

dur, and non censored otherwise (event = 1). For the computation of duration, besides

end-dur, it additionally depends on an init-dur value that represents a quantity of time

(in months), before the snapshot, where we begin our study, and a granularity which

aggregates churn-dur values into time bins (e.g. daily or weekly bins). The latter can

influence the performance of the model, in particular the computation time required

to make predictions. Figure 5.4 shows a visual example of how the survival targets are

computed.

Client A

snapshotinit-dur timeend-dur

Client B

Client C

Client D

X
X

X

: event (non censored)

: event (censored)

: censoring

Churn A
duration

Churn D
duration

Figure 5.4: Event and duration and how censoring influences its computation.

Formally, the survival targets event and duration are computed as:

duration =

di + dc ,if dc ≤ df

di + df ,otherwise
event =

1 ,if dc ≤ df

0 ,otherwise
(5.2)

where di is init-dur, df is end-dur and dc is churn-dur. It is important to note that

init-dur cannot take values less than the client-dur feature, that is, we cannot consider

the survival study of a customer to begin before he actually joins NOS. As such, init-dur

will be capped to client-dur in cases where init-dur > client-dur.

5.6 Modeling

In this DOF, the survival models presented in Section 3.3.3 will be fitted using the previ-

ously transformed dataset and evaluated in both metric and computational performance1.

In order to fit these models, the Python package scikit-survival was used [29]. Besides

these, a benchmark model resembling a model generated by NOS’s churn prediction

pipeline, will also be fitted and evaluated in order to validate the performance of the

survival models. The benchmark model is a binary classifier, and was built using the

1For reference, every experiment was ran locally on a linux server with an Intel(R) Xeon(R) Gold 6130
CPU @ 2.10GHz and 64GB of Ram

30

5.7. EVALUATION

same set of DOF parameters as the survival models, except for Survival Targets, of which

we are only interested in the binary event column. The classifier used by NOS is a GBoost

tree classifier, GBTClassifier from the pyspark.ml library [42]. Since all survival models

are ran locally, to keep comparisons between models fair, the benchmark model was also

fitted locally using sklearn’s GradientBoostingClassifier [28], which is conceptually equiva-

lent to pySpark’s GBTClassifier. To validate the benchmark model against NOS’s pipeline

model, a train-test data pair was chosen and both models fitted using this data with the

same set of hyper-parameters. After fitting, the lift chart and feature importance table

for the top 10 features was used to compared both models. If the results mostly agree,

then we consider the benchmark model validated. Initial testing with the new pipeline

was done and validated both of aforementioned tests. After using the train data to fit

survival models, both survival curves and risk scores were predicted and used in the

model’s evaluation. The risk scores are computed differently depending on the model, as

per [scikit-survival]:

• Cox Proportional Hazards: Using the log hazard ratio, that is, the exponential of

the dot product between the feature and parameter vectors;

• Survival Random Forests: Total number of events, which is estimated using the

sum of the estimated ensemble cumulative hazard function, as per Eq. (3.25);

• Gradient Boosted Survival: Using the log hazard ratio, similar to the linear predic-

tor of a Cox Proportional Hazards model.

In the case of the benchmark model, the predicted probabilities are used instead. The

Class name used to fit every model, as well as its package can be seen in Table B.1.

5.7 Evaluation

The models presented in Section 3.3 will be evaluated using the metrics shown in Sec-

tion 3.1. From the four chosen metrics, the lift and gain charts will be discussed in more

detail as they are the ones that carry the most impact business-wise. Both lift and gain

charts are discriminatory metrics, that is, they measure how well a model ranks patients

according to risk. In the case of a classification model, the ranking is as straight-forward

as ordering customers based on their predicted churn probability. In survival models,

this can be done in several ways, such as using the survival probability from the survival

curves or the time-to-event based on a survival probability threshold. However, we will

use the risk scores predicted for each model on the test data instead.2 In order to get these

metrics, we define a new duration, lift-dur, in months, that will be used to get the ground-

truth labels for the test-set, which will serve to compute the true ratio of people that

2Initial testing proved the other two methods to give poor results for the lift and gain metrics, so they
were not considered going further. For other models that do not provide a risk score, these are still a valid
option if one wants to rank instances based on survival risk.

31

CHAPTER 5. EXPERIMENTAL SETUP

churned in each quantile. Regarding the lift and gain metrics, a customer is considered

churned (event=1) if churn-dur < lift-dur, and not churned (event=0) otherwise.

All other metrics, C-score and Brier-score, are obtained directly from the model using

the appropriate method. It should be noted that the survival curves must be estimated

prior to computing the time-dependent Brier score. This metric also requires a set of

time points t to compute the score, and must fall between the minimum event test time

(including) and the maximum event test time (excluding). Furthermore, this method

requires survival curves to have a minimum of two points. The former constraint was

dealt using a data-driven approach by selecting all time points between the 10% and 90%

percentile of observed test event points. As for the latter, this is a problem that can arise

if the train-set has few unique event points. In those cases, the brier score is given by the

respective score for a random model, that is, one that would predict a probability of 0.5

for every survival curve, in each time point. Apart from the aforementioned evaluation

metrics, the fit times will also be reported.

5.8 Experiments

Taking into consideration the aforementioned DOF, experiments were implemented in

several yaml configuration files to be ran by the newly developed pipeline. An example

of an experiment configuration file can be seen in Listing 5.1.

Listing 5.1: Experiment: yaml configuration file example

n_dates : 2

n_folds : 1

l i f t _ d u r s : 1

n_samples_train : 1000

n_samples_test : 1000

samplers :

RUS :

sampling_strategy : 0.33

i n i t _ d u r s : ’0 ’

end_durs : 1

g r a n u l a r i t i e s : ’ weekly ’

models :

RSF :

n_est imators : 100

min_samples_leaf : 2

max_depth : 4

min_samples_split : 10

In this experiment, we run two Train-indexes (n_dates), which are evaluated in two

subsequent test-sets, each. Initially, 1000 examples are sampled from each train-set and

test-set (n_samples_train and n_samples_test), with stratification and without replacement,

and each sample is split into 2 folds (n_folds). If one does not want to run an initial

sampling, then n_samples_train and n_samples_test must be equal to -1. Each experiment

32

5.8. EXPERIMENTS

will be evaluated on the average, over all train-test pairs and lift-durs, for the lift and

gain metrics, and also for each lift-dur in separate. The C-score and Brier-score will be

grouped and evaluated by each train-test pair in order to assess the variability of these

metrics across date-pairs. Furthermore, all metrics are also evaluated over the subsequent

test dates, for each train date, in order to check how stable a model performance is in

future dates. The Class Imbalance method (samplers) used was a Random Under Sampler

with one hyper-parameter, the initial study duration starting on the date of the snapshot

(init_dur=0), the respective end study duration on the next one month (end_dur=1), with

a weekly granularity. And finally, the model used was a Random Survival Forest with

the respective hyper-parameters (models). It is important to note that all items in this

configuration file can be incremented. For example, it is possible to add more than one

item to end_durs to be evaluated in the experiment.

Every parameter used in Data Preparation was chosen based on empirical studies ran

by NOS, which includes steps such as null imputation, feature encoding and feature se-

lection, and thus were not calibrated using this pipeline. For the remaining DOF, the

pipeline was used to calibrate its parameters and, when applicable, its hyper-parameters3

(in the case of the class imbalance and modeling DOF). For these experiments, ten

monthly spaced snapshots (dates) were chosen. One immediate problem that arises when

using the validation methodology explained in Section 5.1 is that each subsequent test-set

must have the same features as the respective train-set, which, as we saw in Section 5.3,

might not always be true due to the way categorical variables are encoded. For example,

it is possible that a category, in either the train-set or test-set, does not have sufficient rep-

resentativity to be considered, resulting in mismatched features between datasets. Since

the features we will be using were already chosen (including one-hot encoded ones), the

ten dates were chosen with the condition that the resulting encoded features were also

present in the Feature Selection config file.

Table 5.1: Experiments: DOF, Experiment Name and Description

DOF Experiment Name Description
Class Imbalance study.sampling.s1 Class Imbalance Hyper-parameter search

Class Imbalance study.sampling.s2 Metric performance between Class imbalance methods

Survival Features study.survfeats.s1 Metric performance between Init-dur and Granularity

Survival Features study.survfeats.s2 Metric performance between End-dur and Granularity

Modelling study.model.s1 Model Hyper-parameter search

Modelling study.model.s2 Metric performance between Models

Modelling study.model.s3 Computational performance between Models

Each experiment will be further detailed in the next Chapter, such as the list of pa-

rameters tried for experiments with a hyper-parameter search, fixed DOF values in each

3each evaluated hyper-parameter uses the respective model’s default hyper-parameter values for the
remaining model hyper-parameters

33

CHAPTER 5. EXPERIMENTAL SETUP

experiment, the number of dates used, among others.

34

6

Results and Discussion

6.1 Class Imbalance

6.1.1 Hyper-parameter search

Let us begin with the Class Imbalance DOF experiments. The purpose of the first ex-

periment, study.sampling.s1, is to find the best set of hyper-parameters for each class

imbalance methodology. As discussed in Section 5.4, a set of different hyper-parameter

values was chosen for each sampler. These set of values can be seen in Table C.1. The val-

ues for the remaining parameters of this experiment can be viewed in Table C.2. After the

experiment finished, the resulting set of metric files was combined and used to produce

lift and a gain charts, as well as a c-score and a time-dependent brier score plots for each

hyper-parameter. These plots can be seen in Appendix C.1. To compute the best values

for each hyper-parameter, we rank each of the four metrics, and then sum the resulting

ranking values (first-place = 1, second-place = 2, etc). The hyper-parameter value with

the lowest score will be chosen as the best value. The set of best hyper-parameters for

each sampler can be seen in Table 6.1.

Table 6.1: Best Class imbalance hyper-parameters (study.sampler.s1)

Sampler Name Hyper-Parameter Best Value
RUS sampling_strategy 0.2

ROS sampling_strategy 0.2

SMOTE-NC
sampling_strategy 0.05

k_neighbors 1

6.1.2 Sampler Comparison

The sets of best hyper-parameters from study.sampler.s1 were used to run another exper-

iment, study.sampler.s2, to test which of the class imbalance methods performed better.

The values for the remaining parameters of this experiment can be viewed in Table C.3.

Let us begin by plotting the lift and gain charts, which are represented in Figure 6.1.

35

CHAPTER 6. RESULTS AND DISCUSSION

1 2 3 4 5
Quantile

0

1

2

3

4

5

6

7

8

Li
ft

Lift chart: sampler

sampler
Non-sampled
ROS
RUS
SMOTE-TOMEK
SMOTENS
TOMEK

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: sampler

sampler
Non-sampled
ROS
RUS
SMOTE-TOMEK
SMOTENS
TOMEK
Random model

(b) Gains chart

Figure 6.1: Lift and Gain Charts: Class Imbalance methods.

1 2 3 4 5
quantile

0

2

4

6

8

10

lif
t

Lift chart: sampler (lift_dur=1)

1 2 3 4 5
quantile

Lift chart: sampler (lift_dur=2)

1 2 3 4 5
quantile

Lift chart: sampler (lift_dur=3)

sampler
Non-sampled
ROS
RUS
SMOTE-TOMEK
SMOTENS
TOMEK

Figure 6.2: Lift chart: Class imbalance methods (lift-dur).

From Figure 6.1(a), we can see that the majority of class imbalance methods is better

than no-sampling. The same thing can be seen in Figure 6.1(b). In both Figures we can

see that the best performers are the RUS and ROS methods, since they are the ones that

have the highest lift in the first quantile and the most accumulated gain in the first twenty

quantiles (RUS coming slightly ahead). We can also see that neither SMOTENS, TOMEK
or its hybrid performed well on these metrics. Also, as expected, in Figure 6.2 we can

observe an inverse relationship between lift-durs and both lift and gain scores. This is

because, the higher the lift-dur, the more customers are considered to be churned in the

ground-truth, thus increasing the true churn average and a lower lift score.

Apart from these, it is also important to evaluate if any of these metrics change over

time for the same model. Figure 6.3 shows that, for the most part, the choice of method

36

6.1. CLASS IMBALANCE

1 2 3 4 5
Number of months (after train set)

0

2

4

6

8

Li
ft

Monthly change in lift (sampler)

sampler
Non-sampled
ROS
RUS
SMOTE-TOMEK
SMOTENS
TOMEK

Figure 6.3: Monthly change in Lift (1st quantile): Class imbalance methods.

1 2 3 4 5
Number of months (after train set)

0

2

4

6

8

10

12

Lift (1st quantile): sampler (lift_dur=1)

1 2 3 4 5
Number of months (after train set)

Lift (1st quantile): sampler (lift_dur=2)

1 2 3 4 5
Number of months (after train set)

Lift (1st quantile): sampler (lift_dur=3)

sampler
Non-sampled
ROS
RUS
SMOTE-TOMEK
SMOTENS
TOMEK

Figure 6.4: Monthly change in lift (1st quantile): Class imbalance (lift-dur).

does not have an influence on the lift score (first quantile) over time, apart from the

Non-sampled, where the score was halved in month 5 (compared to month 1). The same

behavior can be seen across different lift-dur values, as per Figure 6.4.

Regarding the C-score and Brier-score, the first thing that stands out from both Fig-

ure 6.5(a) and Figure 6.5(b) is that both Non-sampled and Tomek have, approximately, the

same C-score and Brier-score, which means that there is a possibility that no Tomek-links

were formed using the TOMEK method. Surprisingly, these were the best performers on

the Brier-score, which can be explained by the lower percentage of churners obtained with

these methods, making predicting the duration to churn easier, since churners duration

will default to end_dur. Regarding the C-index, the best performers were SMOTENS and

the SMOTE-TOMEK hybrid method. This is not in concordance with the results from the

lift and gain charts, and also with the brier-score results, which show a better performance

37

CHAPTER 6. RESULTS AND DISCUSSION

Non
-sa

mple
d

ROS
RUS

SMOTE-TOMEK

SMOTENS

TOMEK

sampler

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: Samplers

(a) C-score

Non
-sa

mple
d

ROS
RUS

SMOTE-TOMEK

SMOTENS

TOMEK

sampler

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

br
ie

r-s
co

re

Box-plot: Samplers

(b) Brier-score

Figure 6.5: C-score and Brier-score: Class Imbalance methods.

for the RUS and ROS samplers.

1 2 3 4 5
Number of months (after train set)

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Monthly change in c-index (sampler)

sampler
Non-sampled
ROS
RUS
SMOTE-TOMEK
SMOTENS
TOMEK

(a) C-score

1 2 3 4 5
Number of months (after train set)

0.00

0.05

0.10

0.15

0.20

0.25

br
ie

r-s
co

re

Monthly change in brier-score (sampler)

sampler
Non-sampled
ROS
RUS
SMOTE-TOMEK
SMOTENS
TOMEK

(b) Brier-score

Figure 6.6: Monthly change in C-score and Brier-score: Class Imbalance methods.

Lastly, let us see how the C-score and Brier-score vary across subsequent test dates.

Figure 6.6(a) and Figure 6.6(b) show that there is even less variation when it comes to

these metrics over time. We can thus conclude that the choice of class imbalance method

38

6.2. SURVIVAL TARGETS

does not have an influence on either metric over future test dates.

6.1.3 Recommendation

Since Tomek and Non-sampled were the worst performers on 3/4 of metrics, then we

conclude that they should be avoided. SMOTENS and SMOTE-TOMEK performed the

best in the C-score metric, but lacked in comparison to the random samplers (RUS and

ROS) in the Lift, Gain and Brier-score metrics. Since for NOS the former two metrics have

the most importance, we recommend to either RUS or ROS to be used moving forward.

Between these two, we recommend using RUS since it will result in a lower number of

instances, which translates into less time fitting models. In Table 6.2, we present the final

recommendation for the Class Imbalance DOF.

Table 6.2: Class Imbalance: Final recommendation.

DOF Parameter Hyper-parameter

Class Imbalance RUS sampling_strategy = 0.2

6.2 Survival Targets

6.2.1 Init-dur comparison

The first Survival feature we are going to discuss is init-dur, which is the variable that de-

fines the beginning of the survival study period, and was evaluated in study.survivalfeats.s1.

This feature can be given by either a value, indicating the number of months before the

snapshot, or by a feature, such as the number of months since the client joined NOS. In

Table 6.3 we show the number of init-dur values being tested in this section. The fixed

variables for the remaining DOF parameters can be seen in Table C.4.

Table 6.3: Survival Targets: Init-durs values.

Survial Feat Values

init-dur 0 3 client-dur pd-dur

From Figure 6.7(a) and Figure 6.7(b), the first observation we can make is that pf-dur

is the worst performer among all init-dur values regarding the lift and gain metrics, and

that init-dur=0 performed the best. In Figure 6.8 we can observe again the same inverse

relationship pattern between lift and gain scores and increasing lift-durs. We can also

see that the relative difference in the lift scores between init-dur values is reduced over

lift-dur values, but this is most likely just normal variation. From this we can conclude

that, regarding the lift and gain metrics, we should avoid using pf-dur as the beginning

of our survival period.

39

CHAPTER 6. RESULTS AND DISCUSSION

1 2 3 4 5
Quantile

0

2

4

6

8

10

Li
ft

Lift chart: init_dur

init_dur
0
3
client-dur
pf-dur

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: init_dur

init_dur
0
3
client-dur
pf-dur
Random model

(b) Gains chart

Figure 6.7: Lift and Gain Charts: Init-durs.

1 2 3 4 5
quantile

0

2

4

6

8

10

12

lif
t

Lift chart: init_dur (lift_dur=1)

1 2 3 4 5
quantile

Lift chart: init_dur (lift_dur=2)

1 2 3 4 5
quantile

Lift chart: init_dur (lift_dur=3)

init_dur
0
3
client-dur
pf-dur

Figure 6.8: Lift chart: Init-durs (lift-dur).

With Figure 6.9 we observe a slight decrease across subsequent test dates for all init-

dur values. From Figure 6.3 (RUS and ROS), we can see the same pattern as client-dur

in Figure 6.9. This is because client-dur was the chosen init-dur in the study.sampler.s2
experiment.

Next, in Figure 6.11(a) and Figure 6.11(b) we analyze how different init-dur values

perform with respect to the C-score and Brier-score. We discretized each init-dur by

granularity to assess how the latter influences these metrics. It is possible to see that init-

dur values ’0’ and ’3’ were the best performers for both metrics. Regarding granularity,

we can see an inverse relationship between the relative performance of its values in both

the C-score and Brier-score, where ’daily’ was the best regarding the C-score and ’weekly’

40

6.2. SURVIVAL TARGETS

1 2 3 4 5
Number of months (after train set)

0

2

4

6

8

10

Li
ft

Monthly change in lift (init_dur)

init_dur
0
3
client-dur
pf-dur

Figure 6.9: Monthly change in Lift (1st quantile): Init-durs.

1 2 3 4 5
Number of months (after train set)

0

2

4

6

8

10

12

Lift (1st quantile): init_dur (lift_dur=1)

1 2 3 4 5
Number of months (after train set)

Lift (1st quantile): init_dur (lift_dur=2)

1 2 3 4 5
Number of months (after train set)

Lift (1st quantile): init_dur (lift_dur=3)

init_dur
0
3
client-dur
pf-dur

Figure 6.10: Monthly change in Lift (1st quantile): Init-durs (lift-dur).

had the best Brier-score. One possible explanation is that, since ’weekly’ discretizes churn-

dur values to a lesser degree, and seeing that Brier-score is a calibration metric, that is,

measures how similar observed event times are compared to the ones predicted by the

model, then having less unique event points can be seen as an advantage.

As was the case with the previous experiment, Figure 6.12(a) and Figure 6.12(b) show

almost no variation in the subsequent months with regards to the C-score and Brier-

score. We can thus conclude that the choice of init-dur has almost no influence on the

performance of the model over future test dates for these two metrics.

41

CHAPTER 6. RESULTS AND DISCUSSION

0 3 client-dur pf-dur
init_dur

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: Init-dur

gran
daily
weekly

(a) C-score

0 3 client-dur pf-dur
init_dur

0.00

0.01

0.02

0.03

0.04

0.05

br
ie

r-s
co

re

Box-plot: Init-dur

gran
daily
weekly

(b) Brier-score

Figure 6.11: C-score and Brier-score: Init-durs.

1 2 3 4 5
Number of months (after train set)

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Monthly change in c-index (init_dur)

init_dur
0
3
client-dur
pf-dur

(a) C-score

1 2 3 4 5
Number of months (after train set)

0.00

0.05

0.10

0.15

0.20

0.25

br
ie

r-s
co

re

Monthly change in brier-score (init_dur)

init_dur
0
3
client-dur
pf-dur

(b) Brier-score

Figure 6.12: Monthly change in C-score and Brier-score: Init-durs.

42

6.2. SURVIVAL TARGETS

6.2.2 End-dur comparison

Having evaluated the different values for the beginning of the survival study period with

study.survivalfeats.s1, let us now assess how different values for the end of this period

affect the performance of survival models with study.survivalfeats.s2. Unlike the previous

DOF, end-dur can only take values, and each value indicate the number of months (after

the snapshot), that the survival study period ends. Table 6.4 shows the set of end-dur

values being tested in this experiment. The remaining variables have fixed values, and

can be seen in Table C.5.

Table 6.4: Survival Targets: End-durs values

Survial Feat Values

end-dur 1 2 3 6

1 2 3 4 5
Quantile

0

2

4

6

8

10

Li
ft

Lift chart: end_dur

end_dur
1
2
3
6

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: end_dur

end_dur
1
2
3
6
Random model

(b) Gains chart

Figure 6.13: Lift and Gain Charts: End-durs.

In both Figure 6.13(a) and Figure 6.13(b) it is possible to see that end-dur with values

1,2 and 3 performed similarly throughout the different quantiles, where end-dur=1 was

the best performer in the first quantile. Also, end-dur=6 was the worst performer among

all end-dur values. In Figure 6.14 and Figure 6.14 we group the lift and gain charts by

different lift-dur values. In these plots we can see, once again, an inverse relationship

between lift and gains scores and lift-dur. Furthermore, the more lift-dur increases,

higher values of end-dur start to perform better than lower ones.

In Figure 6.15 we grouped lift scores (first quantile) over successive test dates. We

can see an interesting pattern: higher end-dur values perform better than lower ones

on the first months, but the reverse is observed in later months. Furthermore, we can

43

CHAPTER 6. RESULTS AND DISCUSSION

1 2 3 4 5
quantile

0

2

4

6

8

10

12

lif
t

Lift chart: end_dur (lift_dur=1)

1 2 3 4 5
quantile

Lift chart: end_dur (lift_dur=2)

1 2 3 4 5
quantile

Lift chart: end_dur (lift_dur=3)

end_dur
1
2
3
6

Figure 6.14: Lift chart: End-durs (lift-dur).

1 2 3 4 5
Number of months (after train set)

0

2

4

6

8

10

12

Li
ft

Monthly change in lift (end_dur)

end_dur
1
2
3
6

Figure 6.15: Monthly change in Lift (1st quantile): End-durs.

observe that, the greater the end-dur value, the greater the disparity of lift scores over the

months. With Figure 6.17, we achieved the same aforementioned conclusions, but now

for each lift-dur. In this figure we can also see that, larger end-dur values perform better

for greater lift-dur values and vice-versa.

From Figure 6.16(a) and Figure 6.16(b) we observe a decrease in performance for both

the C-score and Brier-score in higher end-dur values, specially regarding the Brier-score.

The reasoning for this can be the increase in the number of unique event points. It is

also important to remember that end-dur is influenced by granularity, that is, there is a

direct relationship between the number of unique event points, and end-dur values with

increasing granularity. As we saw in the previous experiment, this can have a detrimental

influence in some metrics, such as the brier-score. In Figure 6.16(b) we can observe a

44

6.2. SURVIVAL TARGETS

1 2 3 6
end_dur

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: End-dur

gran
daily
weekly

(a) C-score

1 2 3 6
end_dur

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

br
ie

r-s
co

re

Box-plot: End-dur

gran
daily
weekly

(b) Brier-score

Figure 6.16: C-score and Brier-score: End-durs.

1 2 3 4 5
Number of months (after train set)

0

2

4

6

8

10

12

14
Lift (1st quantile): end_dur (lift_dur=1)

1 2 3 4 5
Number of months (after train set)

Lift (1st quantile): end_dur (lift_dur=2)

1 2 3 4 5
Number of months (after train set)

Lift (1st quantile): end_dur (lift_dur=3)

end_dur
1
2
3
6

Figure 6.17: Monthly change in Lift (1st quantile): End-durs (lift-dur).

clear decrease in the Brier-score for ’weekly’ granularity when compared to ’daily’.

Figure 6.18(a) and Figure 6.18(b) show almost no variation in the subsequent months

regarding the C-score and Brier-score. We can thus conclude that the choice of end-dur

has no influence, regarding the C-score and Brier-score, in the five following months after

the current train-set.

6.2.3 Granularity comparison

Finally, let us discuss the granularity DOF, which is responsible to discretize churn-

dur into differently sized time bins. Table 6.5 presents the granularity categories being

45

CHAPTER 6. RESULTS AND DISCUSSION

1 2 3 4 5
Number of months (after train set)

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Monthly change in c-index (end_dur)

end_dur
1
2
3
6

(a) C-score

1 2 3 4 5
Number of months (after train set)

0.00

0.05

0.10

0.15

0.20

0.25

br
ie

r-s
co

re

Monthly change in brier-score (end_dur)

end_dur
1
2
3
6

(b) Brier-score

Figure 6.18: Monthly change in C-score and Brier score: End-durs.

tested, and on Table C.6 the fixed variables for the remaining DOF. Since granularity was

already evaluated for the C-score and Brier-score in the two previous sections, it will not

be compared here.

Table 6.5: Survival Targets: granularity values

Survival Feat Values

granularity daily weekly

From Figure 6.19(a) and Figure 6.19(b) we can observe that, overall, ’daily’ performs

slightly better than ’weekly’ on both lift and gain metrics. The same pattern can be

see when we compare these metrics across different lift-dur values, as can be seen in

Figure 6.20 and Figure 6.20. With this we conclude that using a finer granularity, such

as ’daily’, results in a slightly better performance. Also, when analyzing the lift score

(first quantile) over subsequent months in Figure 6.21, and for different lift-dur values

with Figure 6.22, we reach the same conclusion of a small improvement by using a ’daily’

granularity over ’weekly’.

6.2.4 Recommendation

Even though we discussed and evaluated each Survival Target DOF, in the end, the choice

of these values are case dependent for what the data scientist want to analyze. For ex-

ample, whilst choosing client-dur as the value for init-dur may lead to better results, if

one wants to study the survival of customers starting from the end of the binding period

(pf-dur), then this should be the init-dur value used instead. Nevertheless, for the best

46

6.2. SURVIVAL TARGETS

1 2 3 4 5
Quantile

0

2

4

6

8

Li
ft

Lift chart: gran

gran
daily
weekly

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: gran

gran
daily
weekly
Random model

(b) Gains chart

Figure 6.19: Lift and Gain Charts: Granularity.

1 2 3 4 5
quantile

0

2

4

6

8

10

lif
t

Lift chart: gran (lift_dur=1)

1 2 3 4 5
quantile

Lift chart: gran (lift_dur=2)

1 2 3 4 5
quantile

Lift chart: gran (lift_dur=3)

gran
daily
weekly

Figure 6.20: Lift chart: Granularity (lift-dur).

performance (both metric and computation wise), it is recommended the use of ’3’ as

the value for init-dur because it not only has a similar performance to ’0’ regarding the

lift, gain and C-score metrics, but it also has the best performance on the Brier-score,

meaning that it has better calibrated predicted event times. Next, for end-dur, the recom-

mendation is case dependent, that is, the value should be chosen based on what month

we want to compute the lift and gain scores on (lift-dur), and for how many months (test

months) we want to use the same survival model. If one wants to prioritize the immedi-

ate performance and train a new model each month, then high end-dur values are not

recommended, and smaller ones are preferred. In this scenario, the recommendation

is to use ’1’ as the value for end-dur as the performance is the best overall. It also has

47

CHAPTER 6. RESULTS AND DISCUSSION

1 2 3 4 5
Number of months (after train set)

0

2

4

6

8

10

Li
ft

Monthly change in lift (gran)

gran
daily
weekly

Figure 6.21: Monthly change in Lift (1st quantile): Granularity.

1 2 3 4 5
Number of months (after train set)

0

2

4

6

8

10

12

Lift (1st quantile): gran (lift_dur=1)

1 2 3 4 5
Number of months (after train set)

Lift (1st quantile): gran (lift_dur=2)

1 2 3 4 5
Number of months (after train set)

Lift (1st quantile): gran (lift_dur=3)

gran
daily
weekly

Figure 6.22: Monthly change in Lift (1st quantile): Granularity (lift-dur).

the advantage of being the most stable over successive test sets. This is confirmed by

its performance on the C-score and Brier-score metrics, where it was the best performer.

And finaly, if we are using ’3’ and ’1’ as our init-dur and end-dur values respectively, then

we should use a ’daily’ granularity. Otherwise we end up with few event points (with

’weekly’ we would get a maximum of four events in this configuration), which might

not be enough for analyzing the predicted survival curves. Plus, using ’daily’ slightly

improves the performance of the model. In summary, Table 6.6 shows the recommended

values for the different survival target DOF for the general case where we train a new

survival month each month.

48

6.3. MODELING

Table 6.6: Survival Targets: Final recommendation

DOF Parameter Value

Survival Features init-dur 3

Survival Features end-dur 1

Survival Features granularity daily

6.3 Modeling

6.3.1 Hyper-parameter search

Similarly to study.sampling.s1, a hyper-parameter search was done for each model in

study.model.s1, and the best set of hyper-parameters was chosen to compare the different

models. The set of tested hyper-parameters can be consulted in Table C.7. The values

for the remaining parameters of this experiment can be viewed in Table C.8. After the

experiment finished, the resulting set of metric files was combined and used to produce

lift and a gain charts, as well as a C-score and a time-dependent Brier-score plots for each

hyper-parameter. These plots can be seen in Appendix C.3. Similarly to study.sampler.s1,

in order to compute the best values for each hyper-parameter, we rank each of the four

metrics, and then sum the resulting ranking values (first-place = 1, second-place = 2, etc).

The hyper-parameter value with the lowest score will be chosen as the best value. The set

of best hyper-parameters for each model can be seen in Table 6.7.

Table 6.7: Model hyper-parameters (study.model.s2)

Model Name Hyper-Parameter Best Value
RSF n_estimators 100

RSF min_samples_leaf 4

RSF max_depth 16

RSF min_samples_split 20
GBSurv n_estimators 100

GBSurv learning_rate 0.2

GBSurv max_depth 2

GBSurv dropout_rate 0.1
CPH n_alphas 20

CPH l1_ratio 0.1
GBoost n_estimators 100

GBoost learning_rate 0.2

GBoost max_depth 16

49

CHAPTER 6. RESULTS AND DISCUSSION

6.3.2 Model Comparison

After finishing the previous experiment, a new one named study.model.s2 was used to

compare the performance of each model, using the best set of each hyper-parameter from

the previous experiment. The values for the remaining parameters of the experiment can

be seen in Table C.9.

1 2 3 4 5
Quantile

0

2

4

6

8

10

12

Li
ft

Lift chart: model

model
CPH
GBSurv
GDBoost
RSF

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: model

model
CPH
GBSurv
GDBoost
RSF
Random model

(b) Gains chart

Figure 6.23: Lift and Gain Charts: Models.

1 2 3 4 5
quantile

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lif
t

Lift chart: model (lift_dur=1)

1 2 3 4 5
quantile

Lift chart: model (lift_dur=2)

1 2 3 4 5
quantile

Lift chart: model (lift_dur=3)

model
CPH
GBSurv
GDBoost
RSF

Figure 6.24: Lift chart: Models (lift-dur).

With Figure 6.23(a) and Figure 6.23(a) we can see that both survival models RSF and

GBSurv had the best performance regarding the lift and gain metrics when compared

to the benchmark model (GBoost) and CPH. The latter is to be expected as CPH is a

linear model, and is not able to deal with non-linearities in the data, which the other

50

6.3. MODELING

three models can. We can observe the same thing if we discretize the lift chart by lift-dur

values, as represented in Figure 6.24. We can also conclude that, on average, over every

train-test pair, the two ensemble survival models (RSF and GBSurv) performed better

than the benchmark model.

1 2 3 4 5
Number of months (after train set)

0

2

4

6

8

10

12

14

Li
ft

Monthly change in lift (model)

model
CPH
GBSurv
GDBoost
RSF

Figure 6.25: Monthly change: Models comparison (Lift chart).

1 2 3 4 5
Number of months (after train set)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Lift (1st quantile): model (lift_dur=1)

1 2 3 4 5
Number of months (after train set)

Lift (1st quantile): model (lift_dur=2)

1 2 3 4 5
Number of months (after train set)

Lift (1st quantile): model (lift_dur=3)

model
CPH
GBSurv
GDBoost
RSF

Figure 6.26: Monthly change in Lift (1st quantile): Models (lift-dur).

In Figure 6.25 we evaluate the lift (first quantile) across successive test dates. In this

figure and Figure 6.26 we see that the ensemble survival models continue to be the best

performers, even across successive test dates. We also observe that there is not much

performance decay for this metric over time and across different lift-dur values.

Regarding the C-score and Brier-score, in Figure 6.27(a) and Figure 6.27(b) we see that

in the former, the RSF is the best model, which means that it is better able to correctly rank

customers by churn risk, however, GBSurv is the best performer on the brier-score metric,

51

CHAPTER 6. RESULTS AND DISCUSSION

CPH GBSurv RSF
model

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: Models

(a) C-score

CPH GBSurv RSF
model

0.00

0.05

0.10

0.15

0.20

0.25

br
ie

r-s
co

re

Box-plot: Models

(b) Brier-score

Figure 6.27: C-score and Brier-score: Models.

which means that it is better calibrated regarding predicted event times. As expected,

CPH performed the worst in both metrics.

1 2 3 4 5
Number of months (after train set)

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Monthly change in c-index (model)

model
CPH
GBSurv
GDBoost
RSF

(a) C-score

1 2 3 4 5
Number of months (after train set)

0.00

0.05

0.10

0.15

0.20

0.25

br
ie

r-s
co

re

Monthly change in brier-score (model)

model
CPH
GBSurv
GDBoost
RSF

(b) Brier-score

Figure 6.28: Monthly change in C-score and Brier-score: Modeling.

Similarly to the lift score, in Figure 6.28(b) and Figure 6.28(b) we assess how the

c-score and brier-score vary across successive test dates (after the train date). In both

figures we observe that there is not much variation for both these metrics across the

months. As such, we conclude that the choice of model does not have an impact on how

52

6.3. MODELING

well it performs in later test dates, for these two metrics.

6.3.3 Model computational performance

In the study.model.s3 experiment we compare the computational cost of each model for a

set of different sample sizes, and also it is performance on the different evaluation metrics.

Table 6.8 shows the different train sample sizes tested. This experiment was done using

the same parameters (and hyper-parameter) values used in the study.model.s2 experiment.

Table 6.8: Train Sample size values: study.model.s3.

Item Values

Train Sample Size [1000, 2000, 4000, 6000, 8000, 10000, 20000, 50000, 100000]

0 20000 40000 60000 80000 100000
Number of training samples

0

100

200

300

400

Fi
t t

im
e

(m
in

)

Number of train samples and Fit time

model
CPH
GBSurv
GDBoost
RSF

Figure 6.29: Fit-time: Models (number of train samples).

We begin by comparing the computation cost, fit-time, for each model over the differ-

ent train sample sizes. In Figure 6.29 we can see that both survival ensemble models have

the biggest computational cost, by orders of magnitude higher. We can also see that, for

the RSF and GBSurv models, the model fit-time scales linearly until a sample size equal

to 50,000, but scales quadratically for 100,000 samples.

Regarding the performance metrics across different train sample sizes, in Figure 6.30(a)

we can see that both boosting models (GBoost and GBSurv) are the ones that take the

longest to achieve the best lift score (first quantile) at around 50,000 train samples. Both

CPH and RSF achieve a stable lift score earlier, at around 30,000 samples. Regarding

the gain score (1st quantile), this value is achieved much earlier for all the models, at

20,000 train samples. For the C-score, we can see that this metric becomes stable at ap-

proximately 20,000 train samples for each model. And for the Brier-score, It is stable for

53

CHAPTER 6. RESULTS AND DISCUSSION

0 20000 40000 60000 80000 100000
n_samples_tr

0

5

10

15

20

to
p-

lif
t (

ris
k)

Number of train samples and top lift

model
CPH
GBSurv
GDBoost
RSF

(a) Lift

0 20000 40000 60000 80000 100000
Number of training samples

0.2

0.3

0.4

0.5

0.6

0.7

To
p

G
ai

n
(1

st
 q

ua
nt

il)

Number of train samples and top gain

model
CPH
GBSurv
GDBoost
RSF

(b) Gain

Figure 6.30: Lift and Gain (1st quantile): Models (number of train samples).

0 20000 40000 60000 80000 100000
Number of training samples

0.0

0.2

0.4

0.6

0.8

1.0

C
-s

co
re

Number of train samples and C-score

model
CPH
GBSurv
RSF

(a) C-score

0 20000 40000 60000 80000 100000
Number of training samples

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Br
ie

r-s
co

re

Number of train samples and Brier Score

model
CPH
GBSurv
RSF

(b) Brier-score

Figure 6.31: C-score and Brier-score: Models (number of train samples).

54

6.4. CASE STUDY: CHURN PREVENTION AND CUSTOMER RETENTION

both ensemble survival models throughout sample sizes, except for CPH, where it only

becomes stable at around 20,000 train samples.

6.3.4 Recommendation

From the previous sections, we can conclude that both survival ensemble models (RSF and

GBSurv) performed the best across all metrics, lift-dur values and also across successive

test dates. This statement remained truthful even when compared to the benchmark

model, thus making these two survival models a good alternative to NOS’s pipeline

churn model. As expected, the linear survival model CPH did not perform particularly

well, as non-linearities are expected. We also saw that the ensemble survival models

took orders of magnitude longer to fit the model than the benchmark model, which is

something to take into consideration for very large datasets. Nevertheless, since we only

use one train-date at a time, plus undersampling, then this scenario does not present as a

problem. The recommended model and the respective hyper-parameters can be seen in

Table 6.9.

Table 6.9: Modeling: Final recommendation

DOF Parameter Hyper-parameter

Models RSF

n_estimators=100

min_samples_leaf=4

max_depth=16

min_samples_split=20

In Table C.11 of Annex A, a summary of the recommendations for each DOF is pre-

sented.

6.4 Case study: Churn prevention and Customer retention

In the previous section we evaluated and discussed how the different survival analysis

DOF performed compared to each other, mainly in regards to the lift and gain metrics,

as these are the most important metrics for NOS, and the only ones where we are able

to make a fair comparison with NOS’s churn model. Let us now examine how we can

leverage survival models to produce business insights regarding customer churn, and

use these to improve the company’s customer retention strategy. In this study, we used

’2019-06-18’ as the snapshot date for our train-data and ’2019-07-24’ for the test-data.

We will use the recommended Class Imbalance and Modeling DOF parameters (with the

respective recommended set of hyper-parameters) from the previous sections. Regarding

the Survival Targets DOF, we will start the survival study in the date of the current snap-

shot (init-dur=0) and will end it in the next 12 months (end-dur=12). Since we have a

wide survival study duration interval, we choose granularity=’weekly’. With this survival

study duration and granularity, we have a maximum of 12×4−1 = 47 unique event time

55

CHAPTER 6. RESULTS AND DISCUSSION

points. The list of parameters used can be seen in Table 6.10. It is important to note

that, both train and test sets, were cleaned using the same process seen in Experimental
Pipeline, which was described in Section 5.3.

Table 6.10: Case-study: Survival parameters (Class Imbalance and Modeling)

Parameter Value
n_dates 1

n_folds 1

lift_durs [1,2,3]

n_samples_train [100000]

n_samples_test [100000]

init_durs [’0’]

end_durs [’12’]

granularities [’weekly’]

Initial Survival analysis

We start our survival analysis by plotting the Kaplan-Meier (KM) estimate for the survival

curve of our test-set. This curve gives us an idea of the survival probability, for the average

customer, over churn event time points. It is important to remember that this curve only

considers churn events and the respective churn durations, and thus does not factor in

other covariates in the estimate.

0 2 4 6 8 10 12
time (months)

0.95

0.96

0.97

0.98

0.99

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Survival Curve: Kaplan-Meier Estimate

Figure 6.32: Survival Curve: Kaplan-Meier Estimate.

In Figure 6.32 we see that, for the whole study period, the survival probability does

not go much below 95%, which confirms a low incidence of customer churn. This also

means that NOS retains the large majority of customers in a 12 month period. As stated

56

6.4. CASE STUDY: CHURN PREVENTION AND CUSTOMER RETENTION

before, the KM estimate does not take into consideration other covariates. However, it is

possible to segment survival curves in regards to these features. Let us follow the same

procedure seen in Section 4.3 and segment customers by client-dur and pf-dur using

Eq. 4.1. Before segmenting, we begin by examining the customer and churn distribution

for both features.

0 24 48 72 96 120 144 168 192 216 240 264 288
sa_activation_months_qty

0

25000

50000

75000

100000

125000

150000

175000

200000

C
ou

nt

48 36 24 12 0 12 24
loyalty_end_months_qty

0

25000

50000

75000

100000

125000

150000

175000

200000

C
ou

nt

0 24 48 72 96 120 144 168 192 216 240 264 288
sa_activation_months_qty

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
en

si
ty

event
churned

48 36 24 12 0 12 24
loyalty_end_months_qty

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

event
churned

Figure 6.33: Customer distribution (total and churned) for pf-dur and client-dur.

With Figure 6.33, we can see the customer distribution in the two upper plots. In

the client-dur (sa_activation_months_qty) plot we observe that the majority of customers

belong in the [0, 48] month interval. As for pf-dur (loyalty_end_months_qty), the ma-

jority of customers is in the [0, 24] month interval, which coincides with the obligatory

binding-period duration by NOS. Regarding the bottom two plots, we can reach the

same conclusions as in Figure 4.6, that is, both features have churn peaks in the month

where the binding-period ends. For client-dur this equals to month 24, and for pf-dur it

is month 0. Now that we know the distributions of each feature and the respective churn

distribution, let us segment them and study the resulting survival curves.

In Figure 6.34(a) we observe that customers almost finishing their binding-period

57

CHAPTER 6. RESULTS AND DISCUSSION

0 2 4 6 8 10 12
time (months)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Survival Curve: Kaplan-Meier Estimate (pf-groups)

No PF
Finishing PF
Last year PF
PF

(a) pf-dur groups

0 2 4 6 8 10 12
time (months)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Survival Curve: Kaplan-Meier Estimate (client-groups)
New
Recent
Old

(b) client-dur groups

Figure 6.34: Survival Curve: Kaplan-Meier Estimate (pf-dur and client-dur groups).

with NOS (Finishing PF group) have the lowest survivability among all the pf-dur groups.

This is to be expected as there is a clear peak in the number of churners when the binding-

period ends, as we saw in Figure 6.33. Clients in the PF group have the highest surviv-

ability, which is also to be expected since our survival study ends at month 12, and as

such, this group of customers (with pf-dur>12), did not have enough time to finish their

binding-period. As for the Last year PF group we can see a clear decline in survivability

around the 6 months mark. This can be explained by the fact that month 6 coincides with

the lower-end pf-dur of this group, that is, there are customers in this group that will no

longer have an active binding-period by the end of month 6. In Figure 6.34(b), we can

see that the New group has the highest survival probability overall. This is due to the

fact that this group (client-dur<4) has their binding contract active, thus making it more

difficult to churn. The Recent group has the lowest survivability, which can be explained

by the fact that this group includes customers ending their binding-period.

Survival Modeling and Evaluation

Now that we have a basic understanding of the average survivability for our dataset, let

us run a survival model to analyze the interaction between the survival targets and the

other features in our dataset. For this, we will run an experiment with the recommended

Class Imbalance and Modeling parameters from the previous sections. Table 6.11 presents

the chosen parameters. After fitting the survival model, we obtained the survival curves

and risk scores for each customer. Let us now evaluate how the model performed.

We begin by evaluating the lift (in the first five quantiles) and the gains metrics. In

Figure 6.35(a) we observe an inverse relationship between lift-dur and the lift score in

58

6.4. CASE STUDY: CHURN PREVENTION AND CUSTOMER RETENTION

Table 6.11: Case-study: Survival parameters

Parameter Value

samplers
RUS:

• sampling_strategy = 0.2

models

GBSurv:

• learning_rate = 0.2

•max_depth = 2

• dropout_rate = 0.1

1 2 3 4 5
quantile

0

2

4

6

8

10

12

14

16

lif
t

lift-dur
1
2
3

(a) Lift

0 20 40 60 80 100
quantile

0.0

0.2

0.4

0.6

0.8

1.0

ga
in

lift-dur
1
2
3
Random model

(b) Gain

Figure 6.35: Lift and Gain: RSF.

the first quantile. This is to be expected, and a similar pattern was also observed in

Section 6.2.2. By comparing these results from the ones from the previous sections, we

can again conclude that one should use lower end-dur values to get better performance

out of the lift and gains scores for lower lift-dur values. Nevertheless, in this case-study,

we are interested in studying the survivability over a longer study period, and thus, lift

scores for low lift-dur values are not of interest. Next, we assess the performance of the

model with the C-score and Brier-score.

Table 6.12: Case-study: C-score and Integrated Brier-score

Metric Value

C-score 0.82

Integrated Brier-Score 0.015

In Table 6.12 we see that both the C-score and Brier-score performed better than a

random model (0.5 and 0.25 respectively), and also had a similar performance to the RSF

59

CHAPTER 6. RESULTS AND DISCUSSION

model from Section 6.3.2. Regarding the C-score, having a C-score of 0.82 means that our

model correctly predicted 82% of all concordant pairs in our data, that is, it predicted

correctly, for 82% of pairs of events, the correct order of events. Even though the C-score

is a useful discriminating metric, it cannot assess how well a model is calibrated. For

evaluating how well a model is calibrated (and also able to discriminate) we use the Brier-

score. In this model we evaluate the Brier score for the event times in the 10% and 90%

percentile using the Integrated Brier-score, of which we obtained a score of 0.015, which

is a good score when compared to a random model. We can also obtain the Brier-score for

each month.

0 1 2 3 4 5 6 7 8 9 10 11 12
time (months)

0.00

0.01

0.02

0.03

0.04

0.05

br
ie

r-s
co

re

Brier-score: Monthly

Figure 6.36: Brier-score: Monthly.

In Figure 6.36 we see that there is a direct relationship between the Brier-score and

the time (months). This means that the our model predictions become less calibrated the

further we move in time.

Survival predictions: Survival Curves

Seeing that our model is well calibrated and validated regarding its discriminatory perfor-

mance, we can use it to predict survival curves and use these to generate insights about

the survivability of customers and the associated client features. Let us begin by plotting

the average survival curve, for the average client.

From Figure 6.37 we can see that the survival curve from the Kaplan-Meier estimate

is more optimistic than the one from our RSF model. Now that we have a basic idea about

the average survivability, we can study the influence of different features on a customer’s

survival curve. Since we are unable to do this for all the features, we will use only the

top four features from the model. Unfortunately, the scikit-survival package does not offer

a feature_importance method for it is classes. Because of this, the author of the package

recommends the use of Feature Permuation Importance instead. In this method, for each

60

6.4. CASE STUDY: CHURN PREVENTION AND CUSTOMER RETENTION

0 2 4 6 8 10 12
time (months)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Estimator
Kaplan-Meier
RSF

Figure 6.37: Survival Curve: RSF and KM Estimates.

individual feature, we randomly shuffle its values across instances, and then compare the

prediction error (or metric) with the one from the original dataset. This means that, if a

feature is important, then shuffling will decrease the model’s performance. In our case,

the metric used will be the C-score.

Table 6.13: Case-study: Top four features (Feature permutation)

Feature Importance

loyalty_end_months_qty 0.104

last_port_out_req_months_num 0.061

months_to_end_last_pack_promotion_num 0.009

last_contact_insatisfaction_months_num 0.007

From Table 6.13 we can see that pf-dur is the most important feature. This means

that if we randomly shuffle it is values, that is, we remove the feature’s relationship with

survival time, then the score for the test-data drops, on average, by 0.104 points. Feature

’last_port_out_req_months_num’ comes slightly behind, and the last two are one order of

magnitude less important than the former two features. Table 6.14 shows a description

of each feature.

We can now segment each of these four features to check if there are any differ-

ences in the survivability of different groups. Since we only have a segmentation for

loyalty_end_months_qty, the remaining features will be segmented through 1D clustering.

These 1D clusters have some nice properties, namely that each will be contained within

an interval, and that the intervals for each clusters will be disjoint. We chose the KMeans

algorithm for the segmentation task. Since we do not know how many clusters we should

have for each feature, we will run the algorithm through ’k’ number of clusters (in our

case from 1 to 10) and compute the sum of squared distance (SSE) between data points

61

CHAPTER 6. RESULTS AND DISCUSSION

Table 6.14: Case-study: Top four features description

Feature Description

loyalty_end_months_qty Number of months remaining until
the end of the binding period

last_port_out_req_months_num Number of months since the last
port-out request (request to change
phone numbers)

months_to_end_last_pack_promotion_num Number of months since the last
promotion

last_contact_insatisfaction_months_num Number of months since the client
showed insatisfaction in a commer-
cial outbound

and their respective cluster’s centroids. We will then pick the ’k’ number of clusters where

the SSE starts to flatten. This method is known as the Elbow method.

2 4 6 8 10
Number of clusters

0

2000

4000

6000

8000

Su
m

 o
f s

qu
ar

ed
 d

is
ta

nc
e

Feature
last_port_out_req_months_num
months_to_end_last_pack_promotion_num
last_contact_insatisfaction_months_num

Figure 6.38: Elbow method: Sum of squared distances.

In Figure 6.38 we can see that the SSE curve starts to flatten out at around k = 4

clusters for each feature, which means that this will be the number of clusters chosen. In

Figure 6.39 we show the clusters generated by KMeans, and the segmentation used for

pf-dur. Next, we plot the survival curves for each one of these groups.

From Figure 6.40 we can see that Cluster 3 from last_port_out_req_months_num is

clearly more at risk for churning than the remaining clusters. This means that the group

of customers with a negative value for this feature, that is, customers that will request a

new port-out in the feature are much more at risk of churning within the next 12 months.

In months_to_end_last_pack_promotion_num we can see that clusters 2 and 4 are more at

risk, specially cluster 2. This means that having more than 10 month since the last promo-

tion contact drastically increases churn risk. From last_contact_insatisfaction_months_num

62

6.4. CASE STUDY: CHURN PREVENTION AND CUSTOMER RETENTION

10 0 10 20 30 40 50
last_port_out_req_months_num

1

2

4

3

C
lu

st
er

Cluster
1
2
3
4

0 5 10 15 20 25 30
months_to_end_last_pack_promotion_num

1

4

3

2

C
lu

st
er

Cluster
1
2
3
4

10 8 6 4 2 0 2
last_contact_insatisfaction_months_num

1

4

2

3

C
lu

st
er

Cluster
1
2
3
4

50 40 30 20 10 0 10 20
loyalty_end_months_qty

Last year PF

No PF

Finishing PF

PF

pf-group
Last year PF
No PF
Finishing PF
PF

Figure 6.39: Clusters: KMeans (k=4) for top four features.

we clearly see that customers from cluster 2 are more at risk for churning. In this

case, this means that customers who made an outbound in-satisfaction contact within

the prior 2 months are significantly more at risk of churning. And finally, with loy-
alty_end_months_qty we conclude the same thing as the previous section, in that cus-

tomers that are much closer to ending their binding period (Finishing PF group) are more

at risk of churning.

Censored Customers: Clients lost

Now we will focus our attention on customers that are still alive, and assess how many

of them are going to churn within the survival study period. In order to achieve this, we

filtered customers by those who have not churned yet (event=0), and used the predicted

survival curves to get the survival probabilities for different monthly events. With these

probabilities, we can estimate the lifetime of a customer by setting a probability threshold

for which we consider a customer churned. Since we do not know the ideal value for this

threshold, we ran this experiment with several thresholds.

63

CHAPTER 6. RESULTS AND DISCUSSION

0 2 4 6 8 10 12
times

0.4

0.5

0.6

0.7

0.8

0.9

1.0
pr

ed
s

Cluster
1
2
3
4

0 2 4 6 8 10 12
times

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

pr
ed

s

Cluster
1
2
3
4

0 2 4 6 8 10 12
times

0.80

0.85

0.90

0.95

1.00

pr
ed

s

Cluster
1
2
3
4

0 2 4 6 8 10 12
times

0.75

0.80

0.85

0.90

0.95

1.00
pr

ed
s

pf-group
Finishing PF
Last year PF
No PF
PF

Figure 6.40: Survival Curve: Top four features (with clusters).

Table 6.15: Number of customers lost: Monthly time windows

1m 3m 6m 9m proba-threshold

0 0 0 12 0.5

0 0 3 99 0.6

0 0 100 486 0.7

0 46 673 2022 0.8

In Figure 6.41 we can see that there is a direct relationship between the churn month

window and the number of churned customers. As expected, we can also see an increase

in the number of churned customers the more we increase the probability threshold. One

can use these figures and then decide a probability threshold to use. Chosen a threshold,

we can view the names of the customers, in each month window, ranked by survival

probability, and use this information to define better retention strategies for the most at

risk customers.

64

6.4. CASE STUDY: CHURN PREVENTION AND CUSTOMER RETENTION

1m 3m 6m 9m
Month window

10

100

1000

N
um

be
r o

f c
us

to
m

er
s

lo
st

Number of customers lost: Monthly time windows

probability threshold
0.5
0.6
0.7
0.8

Figure 6.41: Case-study: Number of customers lost (Monthly time windows).

Censored Customers: Expected Loss

Another use for these survival curves is to identify which censored customers (event=0)

are the most expensive to lose over the next 12 months, if we were to lose them on the

predicted churn event. In order to compute these, we generated random customerIDs and

random Monthly charges for each customer. In this experiment, we consider a customer to

be churned if it is survival probability drops below 0.5. To compute a customer’s Expected
loss we compute how much they are worth over the next 12 months (12×MonthlyCharges)

and subtract the revenue we get until the customer churns (ExpectedChurn×MonthlyCharges).

Table 6.16: Case-study: Expected Loss

CustomerID MonthlyCharges Expected Churn dur Expected loss

5092-YELV 122.76 11.5 1411.74

8759-KCYS 122.71 11.5 1411.16

4449-WHCF 122.09 11.5 1404.04

9342-BZRB 124.36 11.25 1399.05

1536-KQYB 123.32 11.25 1387.35

Table 6.16 shows the top5 customers in regards to their expected loss. With this table

we can, for instance, define strategies that factor in how expensive it is to retain a high-

value customer (e.g. one with a higher expected loss), and the revenue lost by losing said

customer to voluntary churn.

65

7

Conclusion and Future work

In this dissertation we studied the application of survival methodologies in a Portuguese

telecom company, in the topic of churn prediction. As stated before, the use of survival

methods allows for the prediction of not only the event, but also the time-to-event, which

is not possible in normal regression algorithms due to the presence of censored instances.

However, using survival analysis in this context poses several problems, the first being the

low incidence of churners, leading to a highly imbalanced dataset. Another complication

was the choice of the survival duration, that is, the difference in time between the start

of the survival study and its end, which as was shown during this dissertation, can have

different impacts on the performance metrics depending on the objective of the survival

study.

In order to automate this process, an end-to-end experimental pipeline was developed to

run survival experiments. This pipeline is composed of steps from data cleaning to evalu-

ation, and was thoroughly discussed. Several experiments were constructed to assess how

the different DOF parameters impacted both the metric performance and computational

performance of the survival models. From these, recommendations were made for each

DOF in order to better use and understand this type of models.

In the end, a case-study was presented with the objective of showing potential key in-

sights offered by survival models. Key insights included the survival probabilities for the

average customer over a year, survival probabilities for different groups in the most impor-

tant features (by feature permutation importance), number of non-censored customers

lost by each month of the survival study, and the expected loss of revenue by customer

churn.

Future work

Since an experimental pipeline was developed for survival analysis, one can take advan-

tage of it and experiment with different types of survival modeling techniques, or any

other DOF. Among these, the following stand out:

• Using Time-dependent covariates. The data used in this dissertation is time-series

66

in nature, and as such, in order to take full advantage of covariate variation between

different time-points, a survival approach able to model these variations would be

interesting to experiment with. These models can then be used in the experimental

pipeline and evaluated against the already implemented models.

• Survival Explainability. Even though survival models demonstrate good perfor-

mance when compared to statistical models or classical machine learning models,

they present themselves as black boxes, specially in the case of ensemble models.

In lieu of this, there have been some developments in regards to explainability tech-

niques for survival analysis, namely SurvShap [21]. This model-agnostic explain-

ability technique uses Shapley values to explain the survival functions predicted

by the survival models. These explanations can then support domain experts, with-

out the necessary machine learning knowledge, in making decisions based on the

predictions from these models.

• Scaling for big data. Even though much of the data preparation step was made

possible by distributed data processing frameworks, such as Spark, the remainder

of this process, including class balancing, modeling and evaluation was done locally.

In order to allow for bigger models to be trained, specially if one wants to model

time-dependent covariates, distributing the computation for modeling is necessary.

67

Bibliography

[1] S. Barua, M. Islam, K. Murase, et al. “ProWSyn: Proximity weighted synthetic over-

sampling technique for imbalanced data set learning”. In: Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer. 2013, pp. 317–328 (cit. on p. 6).

[2] L. Breiman. “Random Forests”. en. In: Machine Learning 45.1 (Oct. 2001), pp. 5–32.

issn: 0885-6125, 1573-0565. (Visited on 03/09/2014) (cit. on pp. 4, 15).

[3] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. “DBSMOTE: density-

based synthetic minority over-sampling technique”. In: Applied Intelligence 36.3

(2012), pp. 664–684 (cit. on p. 6).

[4] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. “Safe-level-smote:

Safe-level-synthetic minority over-sampling technique for handling the class imbal-

anced problem”. In: Pacific-Asia conference on knowledge discovery and data mining.

Springer. 2009, pp. 475–482 (cit. on p. 6).

[5] J. Burez and D. Van den Poel. “Handling class imbalance in customer churn pre-

diction”. In: Expert Systems with Applications 36.3 (2009), pp. 4626–4636 (cit. on

pp. 5, 9).

[6] N. V. Chawla et al. “SMOTE: synthetic minority over-sampling technique”. In:

Journal of artificial intelligence research 16 (2002), pp. 321–357 (cit. on pp. 6, 10).

[7] M. Cleves et al. An introduction to survival analysis using Stata. Stata press, 2008

(cit. on pp. 12, 13).

[8] G. Douzas and F. Bacao. “Effective data generation for imbalanced learning using

conditional generative adversarial networks”. In: Expert Systems with applications
91 (2018), pp. 464–471 (cit. on p. 6).

[9] J. H. Friedman. “Greedy function approximation: a gradient boosting machine”.

In: Annals of statistics (2001), pp. 1189–1232 (cit. on p. 16).

[10] T. A. Gerds and M. Schumacher. “Consistent estimation of the expected Brier score

in general survival models with right-censored event times”. In: Biometrical Journal
48.6 (2006), pp. 1029–1040 (cit. on p. 3).

68

BIBLIOGRAPHY

[11] E. Giunchiglia, A. Nemchenko, and M. v. d. Schaar. “RNN-SURV: A deep recur-

rent model for survival analysis”. In: International Conference on Artificial Neural
Networks. Springer. 2018, pp. 23–32 (cit. on p. 5).

[12] E. Graf et al. “Assessment and comparison of prognostic classification schemes for

survival data”. In: Statistics in medicine 18.17-18 (1999), pp. 2529–2545 (cit. on

p. 9).

[13] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer Series in Statistics. New York, NY, USA: Springer New York Inc., 2001

(cit. on p. 4).

[14] M. Havrylovych and N. Kuznietsova. “Survival analysis methods for churn preven-

tion in telecommunications industry”. In: CEUR Workshop Proceeding. Vol. 2577.

2020, pp. 47–58 (cit. on p. 4).

[15] T. I. Two Modifications of CNN. 1976 (cit. on pp. 6, 10).

[16] H. Ishwaran et al. “Random survival forests”. In: The annals of applied statistics 2.3

(2008), pp. 841–860 (cit. on pp. 5, 15).

[17] J. L. Katzman et al. “DeepSurv: personalized treatment recommender system

using a Cox proportional hazards deep neural network”. In: BMC medical research
methodology 18.1 (2018), pp. 1–12 (cit. on p. 5).

[18] S. Kentritas. Customer Relationship Management: The SAS Perspective (cit. on p. 1).

[19] D. G. Kleinbaum, M. Klein, et al. Survival analysis: a self-learning text. Vol. 3.

Springer, 2012 (cit. on pp. 4, 11, 12).

[20] G. Kovács. “An empirical comparison and evaluation of minority oversampling

techniques on a large number of imbalanced datasets”. In: Applied Soft Computing
83 (2019), p. 105662 (cit. on p. 6).

[21] M. Krzyziński et al. “SurvSHAP (t): Time-dependent explanations of machine

learning survival models”. In: arXiv preprint arXiv:2208.11080 (2022) (cit. on

p. 67).

[22] H. Kvamme, Ø. Borgan, and I. Scheel. “Time-to-event prediction with neural net-

works and Cox regression”. In: arXiv preprint arXiv:1907.00825 (2019) (cit. on

p. 5).

[23] C. Lee et al. “Deephit: A deep learning approach to survival analysis with compet-

ing risks”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1.

2018 (cit. on p. 5).

[24] G. Lemaître, F. Nogueira, and C. K. Aridas. “Imbalanced-learn: A Python Toolbox

to Tackle the Curse of Imbalanced Datasets in Machine Learning”. In: Journal of
Machine Learning Research 18.17 (2017), pp. 1–5. url: http://jmlr.org/papers/

v18/16-365.html (cit. on p. 29).

69

http://jmlr.org/papers/v18/16-365.html
http://jmlr.org/papers/v18/16-365.html

BIBLIOGRAPHY

[25] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/

master/template.pdf (cit. on p. ii).

[26] J. Lu. “Predicting customer churn in the telecommunications industry—-An appli-

cation of survival analysis modeling using SAS”. In: SAS User Group International
(SUGI27) Online Proceedings. Vol. 114. 2002 (cit. on p. 4).

[27] S. Y. Park et al. “Review of statistical methods for evaluating the performance

of survival or other time-to-event prediction models (from conventional to deep

learning approaches)”. In: Korean Journal of Radiology 22.10 (2021), p. 1697 (cit. on

p. 3).

[28] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 31).

[29] S. Pölsterl. “scikit-survival: A Library for Time-to-Event Analysis Built on Top of

scikit-learn”. In: Journal of Machine Learning Research 21.212 (2020), pp. 1–6. url:

http://jmlr.org/papers/v21/20-729.html (cit. on p. 30).

[30] C. D. R. “Regression Models and Life Tables”. In: Journal of the Royal Statistic
Society B.34 (1972), pp. 187–202 (cit. on pp. 4, 13).

[31] Y. Tillé. “Ten years of balanced sampling with the cube method: an appraisal”. In:

Survey methodology 37.2 (2011), pp. 215–226 (cit. on p. 5).

[32] H. Uno et al. “On the C-statistics for evaluating overall adequacy of risk prediction

procedures with censored survival data”. In: Statistics in medicine 30.10 (2011),

pp. 1105–1117 (cit. on pp. 3, 7).

[33] M. Vuk and T. Curk. “ROC curve, lift chart and calibration plot”. In: Metodoloski
zvezki 3.1 (2006), p. 89 (cit. on p. 4).

[34] P. Wang, Y. Li, and C. K. Reddy. “Machine learning for survival analysis: A survey”.

In: ACM Computing Surveys (CSUR) 51.6 (2019), pp. 1–36 (cit. on pp. 7, 8, 13).

[35] G. M. Weiss. “Mining with rarity: a unifying framework”. In: ACM Sigkdd Explo-
rations Newsletter 6.1 (2004), pp. 7–19 (cit. on p. 5).

[36] M. Zeng et al. “Effective prediction of three common diseases by combining

SMOTE with Tomek links technique for imbalanced medical data”. In: 2016 IEEE
International Conference of Online Analysis and Computing Science (ICOACS). IEEE.

2016, pp. 225–228 (cit. on p. 6).

[37] Hue. Hue documentation. https://docs.gethue.com/. Accessed: 2022-02-04

(cit. on p. 18).

[38] José Ferreira, Dianne Gomes, BCG. O valor da Fidelização para o consumidor e o
mercado de Telecomunicações em Portugal. https://www.bcg.com/publications/2
021/fidelizacao-mercadotelco. Accessed: 2022-02-04 (cit. on p. 1).

70

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
http://jmlr.org/papers/v21/20-729.html
https://docs.gethue.com/
https://www.bcg.com/publications/2021/fidelizacao-mercadotelco
https://www.bcg.com/publications/2021/fidelizacao-mercadotelco

BIBLIOGRAPHY

[39] Matt Mansfield, Small Business Trends. CUSTOMER RETENTION STATISTICS –
The Ultimate Collection for Small Business. https://smallbiztrends.com/2016/1
0/customer-retention-statistics.html. Accessed: 2022-02-04 (cit. on pp. 1,

2).

[40] Observador. Queixas à DECO sobem 16% e as das telecomunicações aumentam 30%
em 2020 e lideram há 13 anos. https://observador.pt/2021/02/03/queixas-

a-deco-sobem-16-e-as-das-telecomunicacoes-aumentam-30-em-2020-e-

lideram-ha-13-anos. Accessed: 2022-02-04 (cit. on p. 1).

[41] OmniSci Team. Strategies for Reducing Churn Rate in the Telecom Industry. https:

//www.omnisci.com/blog/strategies-for-reducing-churn-rate-in-the-

telecom-industry. Accessed: 2022-02-04 (cit. on p. 20).

[42] pySpark. PySpark Documentation. https://spark.apache.org/docs/latest/

api/python/. Accessed: 2022-02-04 (cit. on pp. 18, 31).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.6.7) [1].

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 71).

71

https://smallbiztrends.com/2016/10/customer-retention-statistics.html
https://smallbiztrends.com/2016/10/customer-retention-statistics.html
https://observador.pt/2021/02/03/queixas-a-deco-sobem-16-e-as-das-telecomunicacoes-aumentam-30-em-2020-e-lideram-ha-13-anos
https://observador.pt/2021/02/03/queixas-a-deco-sobem-16-e-as-das-telecomunicacoes-aumentam-30-em-2020-e-lideram-ha-13-anos
https://observador.pt/2021/02/03/queixas-a-deco-sobem-16-e-as-das-telecomunicacoes-aumentam-30-em-2020-e-lideram-ha-13-anos
https://www.omnisci.com/blog/strategies-for-reducing-churn-rate-in-the-telecom-industry
https://www.omnisci.com/blog/strategies-for-reducing-churn-rate-in-the-telecom-industry
https://www.omnisci.com/blog/strategies-for-reducing-churn-rate-in-the-telecom-industry
https://spark.apache.org/docs/latest/api/python/
https://spark.apache.org/docs/latest/api/python/
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

A

Appendix 1

Table A.1: Variable Group Description

Data group Number of features in group Description

Agente 8 Information related to seller of ser-
vice

ARPUT 69 Service description (e.g. number of
internet cards, sportv subscription)

Campanhas 8 Selling campaigns

Chaves 3 Chaves: Snapshot date and client
code

Churn 12 Churn: Churn information (e.g.
Next voluntary churn date)

Cliente 29 Information about the client e.g.
Age and PF status)

Consumos 260 Client service usage

Contactos 4 Client enquiries about PF status
and payment

Dunning 9 Communication with customers re-
garding their collections

Faturacao 76 Billing information

Participacao 94 Information related with problems
reported by the client

Portabilidade 4 Information about port out requests

Promocoes 4 Information related to promotions
given to the client

Rede e concorrencia 42 Information about competitors

Retencao 14 Information about client retention
programs

72

B

Appendix 2

Table B.1: Class Imbalance and model class naming

Name Class Name
Random Undersampling imblearn.under_sampling.RandomUnderSampler

Random Oversampling imblearn.over_sampling.RandomOverSampler

Tomek-Links imblearn.under_sampling.TomekLinks

SMOTE-NC imblearn.over_sampling.SMOTENC

Cox Proportional Hazards sksurv.linear_model.CoxnetSurvivalAnalysis

Random Survival Forests sksurv.ensemble.RandomSurvivalForest

Gradient Boosting Survival Analy-
sis

sksurv.ensemble.GradientBoostingSurvivalAnalysis

Gradient Boosting Trees sklearn.ensemble.GradientBoostingClassifier

73

C

Appendix 3

C.1 Class Imbalance

Table C.1: study.sampler.s1: Class imbalance hyper-parameter search parameters

Sampler Name Hyper-Parameter Space
RUS sampling_strategy: [0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1]

ROS sampling_strategy: [0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1]

SMOTE-NC sampling_strategy: [0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1]

SMOTE-NC k_neighbors: [1, 2, 3]

Table C.2: study.sampler.s1: Fixed parameters

Parameter Value
n_dates 1

n_folds 100

lift_durs [1]

n_samples_train [5000]

n_samples_test [10000]

init_durs [’sa_activation_months_qty’]

end_durs [1]

granularities [’weekly’]

models

GBSurv:

• learning_rate = 0.2

•max_depth = 2

• dropout_rate = 0.1

74

C.1. CLASS IMBALANCE

1 2 3 4 5
Quantile

0

1

2

3

4

5

6

7

Li
ft

Lift chart: RUS (sampling_strategy)

sampling_strategy
0,05
0,1
0,2
0,3
0,5
0,75
1

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: RUS (sampling_strategy)

sampling_strategy
0,05
0,1
0,2
0,3
0,5
0,75
1
Random model

(b) Gains chart

Figure C.1: Lift and Gain Charts: hyper-parameter search for RUS (sampling_strategy)

0,05 0,1 0,2 0,3 0,5 0,75 1
sampling_strategy

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: RUS (sampling_strategy)

(a) C-score

0,05 0,1 0,2 0,3 0,5 0,75 1
sampling_strategy

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

br
ie

r-s
co

re

Box-plot: RUS (hyper-parameter search)

(b) Brier-score)

Figure C.2: C-score and Brier-score: hyper-parameter search for RUS (sampling_strategy)

75

APPENDIX C. APPENDIX 3

1 2 3 4 5
Quantile

0

1

2

3

4

5

6

7

8

Li
ft

Lift chart: ROS (sampling_strategy)

sampling_strategy
0,05
0,1
0,2
0,3
0,5
0,75
1

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: ROS (sampling_strategy)

sampling_strategy
0,05
0,1
0,2
0,3
0,5
0,75
1
Random model

(b) Gains chart

Figure C.3: Lift and Gain Charts: hyper-parameter search for ROS (sampling_strategy)

0,05 0,1 0,2 0,3 0,5 0,75 1
sampling_strategy

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: ROS (sampling_strategy)

(a) C-score

0,05 0,1 0,2 0,3 0,5 0,75 1
sampling_strategy

0.00

0.02

0.04

0.06

0.08

0.10

0.12

br
ie

r-s
co

re

Box-plot: ROS (hyper-parameter search)

(b) Brier-score

Figure C.4: C-score and Brier-score: hyper-parameter search for ROS (sampling_strategy)

76

C.1. CLASS IMBALANCE

1 2 3 4 5
Quantile

0

2

4

6

8

10

12

Li
ft

Lift chart: SMOTENS (sampling_strategy)

sampling_strategy
0,05
0,1
0,2
0,3
0,5
0,75
1

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: SMOTENS (sampling_strategy)

sampling_strategy
0,05
0,1
0,2
0,3
0,5
0,75
1
Random model

(b) Gains chart

Figure C.5: Lift and Gain Charts: hyper-parameter search for SMOTE-NC (sam-
pling_strategy)

0,05 0,1 0,2 0,3 0,5 0,75 1
sampling_strategy

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: SMOTENS (sampling_strategy)

(a) C-score

0,05 0,1 0,2 0,3 0,5 0,75 1
sampling_strategy

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

br
ie

r-s
co

re

Box-plot: SMOTENS (hyper-parameter search)

(b) Brier-score

Figure C.6: C-score and Brier-score: hyper-parameter search for SMOTE-NC (sam-
pling_strategy)

77

APPENDIX C. APPENDIX 3

1 2 3 4 5
Quantile

0

2

4

6

8

Li
ft

Lift chart: SMOTENS (k_neighbors)

k_neighbors
1
2
3

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: SMOTENS (k_neighbors)

k_neighbors
1
2
3
Random model

(b) Gains chart

Figure C.7: Lift and Gain Charts: hyper-parameter search for SMOTE-NC (k_neighbors)

1 2 3
k_neighbors

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: SMOTENS (k_neighbors)

(a) C-score

1 2 3
k_neighbors

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

br
ie

r-s
co

re

Box-plot: SMOTENS (hyper-parameter search)

(b) Brier-score

Figure C.8: C-score and Brier score: hyper-parameter search for SMOTE-NC
(k_neighbors)

78

C.2. SURVIVAL FEATURES

Table C.3: study.sampler.s2: Fixed parameters

Parameter Value
n_dates 5

n_folds 100

lift_durs [1,2,3]

n_samples_train [10000]

n_samples_test [30000]

init_durs [’sa_activation_months_qty’]

end_durs [1]

granularities [’weekly’]

models

GBSurv:

• learning_rate = 0.2

•max_depth = 2

• dropout_rate = 0.1

Table C.4: study.survivalfeats.s1: Fixed parameters

Parameter Value
n_dates 5

n_folds 100

lift_durs [1,2,3]

n_samples_train [30000]

n_samples_test [30000]

end_durs [1]

granularities [’daily’, ’weekly’]

samplers
RUS:

• sampling_strategy = 0.2

models

GBSurv:

• learning_rate = 0.2

•max_depth = 2

• dropout_rate = 0.1

C.2 Survival features

C.3 Survival Models and Benchmark

79

APPENDIX C. APPENDIX 3

1 2 3 4 5
Quantile

0

2

4

6

8

10

Li
ft

Lift chart: CPH (n_alphas)

n_alphas
10
100
20
200
50

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: CPH (n_alphas)

n_alphas
10
100
20
200
50
Random model

(b) Gains chart

Figure C.9: Lift and Gain Charts: hyper-parameter search for CPH (n_alphas)

10 100 20 200 50
n_alphas

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: CPH (n_alphas)

(a) C-score

10 100 20 200 50
n_alphas

0.000

0.002

0.004

0.006

0.008

0.010

br
ie

r-s
co

re

Box-plot: CPH (n_alphas)

(b) Brier-score)

Figure C.10: C-score and Brier-score: hyper-parameter search for CPH (n_alphas)

80

C.3. SURVIVAL MODELS AND BENCHMARK

1 2 3 4 5
Quantile

0

5

10

15

20

25

Li
ft

Lift chart: GBSurv (dropout_rate)

dropout_rate
0,1
0,2
0,8

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: GBSurv (dropout_rate)

dropout_rate
0,1
0,2
0,8
Random model

(b) Gains chart

Figure C.11: Lift and Gain Charts: hyper-parameter search for GBSurv (dropout_rate)

0,1 0,2 0,8
dropout_rate

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: GBSurv (dropout_rate)

(a) C-score

0,1 0,2 0,8
dropout_rate

0.000

0.001

0.002

0.003

0.004

0.005

br
ie

r-s
co

re

Box-plot: GBSurv (dropout_rate)

(b) Brier-score

Figure C.12: C-score and Brier-score: hyper-parameter search for GBSurv (dropout_rate

81

APPENDIX C. APPENDIX 3

1 2 3 4 5
Quantile

0

5

10

15

20

25

Li
ft

Lift chart: GBSurv (learning_rate)

learning_rate
0,01
0,02
0,1
0,2

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: GBSurv (learning_rate)

learning_rate
0,01
0,02
0,1
0,2
Random model

(b) Gains chart

Figure C.13: Lift and Gain Charts: hyper-parameter search for GBSurv (learning_rate)

0,01 0,02 0,1 0,2
learning_rate

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: GBSurv (learning_rate)

(a) C-score

0,01 0,02 0,1 0,2
learning_rate

0.000

0.001

0.002

0.003

0.004

0.005

br
ie

r-s
co

re

Box-plot: GBSurv (learning_rate)

(b) Brier-score

Figure C.14: C-score and Brier-score: hyper-parameter search for GBSurv (learning_rate)

82

C.3. SURVIVAL MODELS AND BENCHMARK

1 2 3 4 5
Quantile

0

5

10

15

20

25

30

Li
ft

Lift chart: GBSurv (max_depth)

max_depth
1
10
2
20
4

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: GBSurv (max_depth)

max_depth
1
10
2
20
4
Random model

(b) Gains chart

Figure C.15: Lift and Gain Charts: hyper-parameter search for GBSurv (max_depth)

1 10 2 20 4
max_depth

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: GBSurv (max_depth)

(a) C-score

1 10 2 20 4
max_depth

0.000

0.002

0.004

0.006

0.008

0.010

br
ie

r-s
co

re

Box-plot: GBSurv (max_depth)

(b) Brier-score

Figure C.16: C-score and Brier-score: hyper-parameter search for GBSurv (max_depth)

83

APPENDIX C. APPENDIX 3

1 2 3 4 5
Quantile

0

5

10

15

20

25

30

Li
ft

Lift chart: GBSurv (n_estimators)

n_estimators
10
100
20
200
400

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: GBSurv (n_estimators)

n_estimators
10
100
20
200
400
Random model

(b) Gains chart

Figure C.17: Lift and Gain Charts: hyper-parameter search for GBSurv (n_estimators)

10 100 20 200 400
n_estimators

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: GBSurv (n_estimators)

(a) C-score

10 100 20 200 400
n_estimators

0.000

0.001

0.002

0.003

0.004

0.005

br
ie

r-s
co

re

Box-plot: GBSurv (n_estimators)

(b) Brier-score

Figure C.18: C-score and Brier-score: hyper-parameter search for GBSurv (n_estimators)

84

C.3. SURVIVAL MODELS AND BENCHMARK

1 2 3 4 5
Quantile

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Li
ft

Lift chart: RSF (min_samples_leaf)

min_samples_leaf
16
2
4
8

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: RSF (min_samples_leaf)

min_samples_leaf
16
2
4
8
Random model

(b) Gains chart

Figure C.19: Lift and Gain Charts: hyper-parameter search for RSF (min_samples_leafs)

16 2 4 8
min_samples_leaf

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: RSF (min_samples_leaf)

(a) C-score

16 2 4 8
min_samples_leaf

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

br
ie

r-s
co

re

Box-plot: RSF (min_samples_leaf)

(b) Brier-score

Figure C.20: C-score and Brier-score: hyper-parameter search for RSF (min_samples_leaf)

85

APPENDIX C. APPENDIX 3

1 2 3 4 5
Quantile

0

5

10

15

20

Li
ft

Lift chart: RSF (min_samples_split)

min_samples_split
10
100
20
5
50

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: RSF (min_samples_split)

min_samples_split
10
100
20
5
50
Random model

(b) Gains chart

Figure C.21: Lift and Gain Charts: hyper-parameter search for RSF (min_samples_split)

10 100 20 5 50
min_samples_split

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: RSF (min_samples_split)

(a) C-score

10 100 20 5 50
min_samples_split

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

br
ie

r-s
co

re

Box-plot: RSF (min_samples_split)

(b) Brier-score

Figure C.22: C-score and Brier-score: hyper-parameter search for RSF
(min_samples_split)

86

C.3. SURVIVAL MODELS AND BENCHMARK

1 2 3 4 5
Quantile

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Li
ft

Lift chart: RSF (max_depth)

max_depth
16
2
4
8

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: RSF (max_depth)

max_depth
16
2
4
8
Random model

(b) Gains chart

Figure C.23: Lift and Gain Charts: hyper-parameter search for RSF (max_depth)

16 2 4 8
max_depth

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: RSF (max_depth)

(a) C-score

16 2 4 8
max_depth

0.000

0.002

0.004

0.006

0.008

0.010

0.012

br
ie

r-s
co

re

Box-plot: RSF (max_depth)

(b) Brier-score

Figure C.24: C-score and Brier-score: hyper-parameter search for RSF (max_depth)

87

APPENDIX C. APPENDIX 3

1 2 3 4 5
Quantile

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Li
ft

Lift chart: RSF (n_estimators)

n_estimators
10
100
20
200
400

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: RSF (n_estimators)

n_estimators
10
100
20
200
400
Random model

(b) Gains chart

Figure C.25: Lift and Gain Charts: hyper-parameter search for RSF (n_estimators)

10 100 20 200 400
n_estimators

0.0

0.2

0.4

0.6

0.8

1.0

c-
in

de
x

Box-plot: RSF (n_estimators)

(a) C-score

10 100 20 200 400
n_estimators

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

br
ie

r-s
co

re

Box-plot: RSF (n_estimators)

(b) Brier-score

Figure C.26: C-score and Brier-score: hyper-parameter search for RSF (n_estimators)

88

C.3. SURVIVAL MODELS AND BENCHMARK

1 2 3 4 5
Quantile

0

5

10

15

20

25

30

Li
ft

Lift chart: GDBoost (n_estimators)

n_estimators
10
100
20
200
400

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: GDBoost (n_estimators)

n_estimators
10
100
20
200
400
Random model

(b) Gains chart

Figure C.27: Lift and Gain Charts: hyper-parameter search for GDBoost (n_estimators)

1 2 3 4 5
Quantile

0

5

10

15

20

25

30

Li
ft

Lift chart: GDBoost (learning_rate)

learning_rate
0,01
0,02
0,1
0,2

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: GDBoost (learning_rate)

learning_rate
0,01
0,02
0,1
0,2
Random model

(b) Gains chart

Figure C.28: Lift and Gain Charts: hyper-parameter search for GDBoost (learning_rate)

89

APPENDIX C. APPENDIX 3

Table C.5: study.survivalfeats.s2: Fixed parameters

Parameter Value
n_dates 5

n_folds 100

lift_durs [1,2,3]

n_samples_train [30000]

n_samples_test [30000]

init_durs [’0’]

granularities [’daily’, ’weekly’]

samplers
RUS:

• sampling_strategy = 0.2

models

GBSurv:

• learning_rate = 0.2

•max_depth = 2

• dropout_rate = 0.1

Table C.6: study.survivalfeats.s1 and s2 (granularity): Fixed parameters

Parameter Value
n_dates 5

n_folds 100

lift_durs [1,2,3]

n_samples_train [30000]

n_samples_test [30000]

init_durs [’0’, ’2’, ’client-dur’, ’pf-dur’]

end_durs [1, 2, 3, 6]

granularities [’daily’, ’weekly’]

samplers
RUS:

• sampling_strategy = 0.2

models

GBSurv:

• learning_rate = 0.2

•max_depth = 2

• dropout_rate = 0.1

90

C.3. SURVIVAL MODELS AND BENCHMARK

Table C.7: study.model.s1: Models hyper-parameter search space

Model Hyper-parameter search space
RSF n_estimators: [10, 20, 100, 200, 400]

RSF min_samples_leaf: [2, 4, 8, 16]

RSF max_depth: [2, 4, 8, 16]

RSF min_samples_split: [5, 10, 20, 50, 100]

GBSurv n_estimators: [10, 20, 100, 200, 400]

GBSurv learning_rate: [0.01, 0.02, 0.1, 0.2]

GBSurv max_depth: [1, 2, 4, 10, 20]

GBSurv dropout_rate: [0.1, 0.2, 0.8]

CPH n_alphas: [10, 20, 50, 100, 200]

CPH l1_ratio: [0.1, 0.2, 0.4, 0.8]

GDBoost n_estimators: [10, 20, 100, 200, 400]

GDBoost learning_rate: [0.01, 0.02, 0.1, 0.2]

GDBoost max_depth: [1, 2, 4, 10, 20]

Table C.8: study.model.s1: Fixed parameters

Parameter Value
n_dates 2

n_folds 100

lift_durs [1]

n_samples_train [100000]

n_samples_test [10000]

init_durs [’3’]

end_durs [1]

granularities [’daily’]

samplers
RUS:

• sampling_strategy = 0.2

91

APPENDIX C. APPENDIX 3

Table C.9: study.model.s2: Fixed parameters

Parameter Value
n_dates 5

n_folds 100

lift_durs [1,2,3]

n_samples_train [100000]

n_samples_test [10000]

init_durs [’3’]

end_durs [1]

granularities [’daily’]

samplers
RUS:

• sampling_strategy = 0.2

1 2 3 4 5
Quantile

0

5

10

15

20

25

30

Li
ft

Lift chart: GDBoost (max_depth)

max_depth
1
10
2
20
4

(a) Lift chart

0 10 20 30 40 50 60 70 80 90 100
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

Gains chart: GDBoost (max_depth)

max_depth
1
10
2
20
4
Random model

(b) Gains chart

Figure C.29: Lift and Gain Charts: hyper-parameter search for GDBoost (max_depth)

92

C.3. SURVIVAL MODELS AND BENCHMARK

Table C.10: study.model.s3: Fixed parameters

Parameter Value
n_dates 5

n_folds 100

lift_durs [1,2,3]

n_samples_train [10000]

n_samples_test [30000]

init_durs [’sa_activation_months_qty’]

end_durs [1]

granularities [’weekly’]

models

GBSurv:

• learning_rate = 0.2

•max_depth = 2

• dropout_rate = 0.1

Table C.11: Final Recommendation

Parameter Value
init_durs [3]

end_durs [1]

granularities [’daily’]

samplers RUS:

• sampling_strategy = 0.2

models

RSF

• n_estimators = 4

•min_samples_leaf = 4

•max_depth = 16

•min_samples_split = 20

93

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Listings
	Glossary
	Acronyms

	1 Introduction
	1.1 Problem
	1.2 Motivation
	1.3 Objectives and Strategy

	2 State of the Art
	2.1 Metrics
	2.2 Models
	2.3 Dealing with Class imbalance

	3 Methodology
	3.1 Metrics
	3.2 Dealing with class imbalance
	3.3 Survival Analysis
	3.3.1 Fundamental concepts
	3.3.2 Statistical Methods
	3.3.3 Machine Learning

	4 Dataset and Exploratory Data Analysis
	4.1 Database description
	4.2 Variable Description
	4.3 Exploratory Data Analysis

	5 Experimental setup
	5.1 Time-series validation
	5.2 Experimental Pipeline
	5.3 Data Preparation
	5.4 Class Imbalance
	5.5 Survival Targets
	5.6 Modeling
	5.7 Evaluation
	5.8 Experiments

	6 Results and Discussion
	6.1 Class Imbalance
	6.1.1 Hyper-parameter search
	6.1.2 Sampler Comparison
	6.1.3 Recommendation

	6.2 Survival Targets
	6.2.1 Init-dur comparison
	6.2.2 End-dur comparison
	6.2.3 Granularity comparison
	6.2.4 Recommendation

	6.3 Modeling
	6.3.1 Hyper-parameter search
	6.3.2 Model Comparison
	6.3.3 Model computational performance
	6.3.4 Recommendation

	6.4 Case study: Churn prevention and Customer retention

	7 Conclusion and Future work
	Bibliography
	A Appendix 1
	B Appendix 2
	C Appendix 3
	C.1 Class Imbalance
	C.2 Survival features
	C.3 Survival Models and Benchmark

	Back Matter
	Back Cover

