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Abstract

In recent years, there has been an increasing trend in the use of black-box machine

learning models in high-stakes decision making throughout different domains of society.

Even though these models might be very accurate, there is a need to understand the

reason behind the decisions, that is, a need to interpret the models. This need can be

seen in predicting the waiting time in the Emergency Department of a hospital, where

we can not simply trust a model prediction to manage a real health environment without

understanding its reasons, thus, making black-box models impracticable in this scenario.

Although multiple studies have aimed to explain black-box models, this can give the

model even more power and be misleading which is why we should avoid it in high-

stakes decisions and use an interpretable model instead.

This thesis demonstrates that interpretable machine learning models can be as good

or even better than state of the art black-box models when predicting the waiting time

in the Emergency Department of a hospital. Moreover, we also propose four new rule-

based methods. To achieve this, we implemented 12 machine learning models, 6 non-

interpretable (black-box) methods (ARIMA, SARIMA, Prophet, LSTM, GRU and the

Transformer) and 6 rule-based and interpretable methods (RuleFit, SIRUS, REN, RDLL,

RDLE and RDLR), 4 of which are proposed in this work (the REN, RDLL, RDLE and

RDLR). The results obtained revealed that although some black-box models can achieve

very good predictions of the waiting times in the emergency department, in some scenar-

ios, interpretable models can outperform them.

Keywords: Interpretability, Machine Learning, Time Series, Interpretable Machine Learn-

ing, Rule-based Algorithms, Emergency Department Waiting Times
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Resumo

Nos últimos anos, tem havido uma tendência crescente na utilização de modelos black-
box de machine learning na tomada de decisões de alto risco em diferentes domínios da

sociedade. Embora estes modelos possam ser muito precisos, existe a necessidade de com-

preender a razão por detrás das decisões, isto é, existe uma necessidade de interpretar

os modelos. Esta necessidade pode ser vista na previsão do tempo de espera no Depar-

tamento de Emergência de um hospital, onde não podemos simplesmente confiar numa

previsão de um modelo para gerir um ambiente de saúde real sem compreender a sua

razão, tornando assim os modelos black-box impraticáveis neste cenário. Apesar de terem

sido desenvolvidos vários estudos com o objetivo de explicar os modelos black-box, isto

pode dar-lhes ainda mais poder e ser enganador. Por estas razões devemos optar por usar

um modelo interpretável em vez de modelos black-box.

Esta tese demonstra que modelos de aprendizagem automática interpretáveis podem

ser tão bons ou até mesmo melhores do que os modelos não interpretáveis considerados

state-of-the-art ao prever o tempo de espera no departamento de emergência de um hos-

pital. Além disso, esta tese propõe quatro modelos de aprendizagem automática novos

baseados em regras. De forma a atingir estes objetivos, implementámos 12 modelos de

aprendizegem automática, 6 dos quais não interpretáveis (black-box) (ARIMA, SARIMA,

Prophet, LSTM, GRU e o Transformer) e 6 modelos interpretáveis baseados em regras

(RuleFit, SIRUS, REN, RDLL, RDLE e RDLR ), 4 dos quais foram desenvolvidos e propos-

tos nesta dissertação (REN, RDLL, RDLE e RDLR). Os resultados obtidos revelaram que,

embora alguns modelos black-box consigam fazer previsões muito boas dos tempos de

espera no serviço de urgência, em alguns cenários, os modelos interpretáveis são capazes

de os superar.

Palavras-chave: Interpretabilidade, Aprendizagem Automática, Time Series, Aprendi-

zagem Automática Interpretável, Algoritmos baseados em regras, Tempo de Espera no

Serviço de Emergência

ix





Contents

List of Figures xiii

List of Tables xix

Acronyms xxiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Why should we use interpretable machine learning . . . . . . . . . . . . 2

1.2.1 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Interpretable Machine Learning Fundamentals . . . . . . . . . . 5

1.2.3 Problems with explaining black-box machine learning models . 7

1.2.4 Sparse and Logical Models . . . . . . . . . . . . . . . . . . . . . . 9

1.2.5 Generalized Additive Models . . . . . . . . . . . . . . . . . . . . 9

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 State of the art 13

2.1 Interpretable Machine Learning Models . . . . . . . . . . . . . . . . . . 13

2.1.1 RuleFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 SIRUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Predicting Affluence in Emergency Departments . . . . . . . . . 21

2.2.2 Predicting Waiting Time in Emergency Departments . . . . . . . 23

3 Exploratory Data Analysis 27

3.1 Overall Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Seasonalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Hospital Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Methodology 39

4.1 Dataset Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



4.2 Baseline Non Interpretable models . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 ARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 SARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Prophet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.4 RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.5 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Interpretable models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 RuleFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 SIRUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Proposed New Interpretable models . . . . . . . . . . . . . . . . . . . . 56

4.4.1 REN: RuleFit with ElasticNet . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Interpretable Rules by DL-Learner . . . . . . . . . . . . . . . . . 57

5 Results 63

5.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Non-Interpretable Models . . . . . . . . . . . . . . . . . . . . . . 63

5.1.2 Interpretable Models . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Interpretable Models . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Non-Interpretable Models . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Sparsity versus Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusion 83

6.1 Contributions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 87

Appendices

A Interpretable Models’ Accuracy by Number of Relevant Rules 93

A.1 RuleFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 SIRUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.3 REN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.4 RDLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.5 RDLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.6 RDLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xii



List of Figures

1.1 A model trained on the PASCAL VOC 2007 dataset identifies a horse on the

image by focusing on the source tag presented in the lower left corner. When

the tag is removed the model can not classify the figure as a horse anymore [3].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Saliency does not explain anything, it only shows us where the network is

looking at. We have no idea why this image is labeled as either a dog or a

musical instrument when considering only saliency. The explanations look

almost the same for both classes. Credit: Chaofen Chen, Duke University [2]. 8

1.3 Predicting which individuals are arrested within two years of release by a

decision tree (a), a decision list (b), and a decision set (c). The dataset used is

the ProPublica recidivism dataset [23] [12]. . . . . . . . . . . . . . . . . . . 10

1.4 Hierarchical relationships between GAMs, additive models, linear models,

and scoring systems [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Inaccuracy comparisons between tree ensemble methods (Mart, ISLE) and rule

based ensembles (RuleFit, RuleFit 200) [27]. . . . . . . . . . . . . . . . . . 15

3.1 Sample from the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Total number of entries per year in the different emergency levels. . . . . . 29

3.3 Distribution of the waiting

time in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Distribution of the number of

of people waiting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Relation between the

waiting time and the Emergency Level. . . . . . . . . . . . . . . . . . . . . . 30

3.6 Relation between the number of

people waiting and the Emergency Level. . . . . . . . . . . . . . . . . . . . 30

3.7 Average waiting time in

minutes throughout the years in each

Emergency Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xiii



3.8 Average number of people

waiting throughout the years in each

Emergency Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 Relation between the mean

waiting time with the months of the year. . . . . . . . . . . . . . . . . . . . 32

3.10 Relation between the mean

number of people waiting with the months of the year. . . . . . . . . . . . . 32

3.11 Relation between the mean

waiting time with the day of the week. . . . . . . . . . . . . . . . . . . . . . 33

3.12 Relation between the mean

number of people waiting with the day of the week. . . . . . . . . . . . . . 33

3.13 Relation between the average waiting time with the day of the month. . . . 33

3.14 Relation between the average number of people waiting with the day of the

month. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.15 Daily behavior of the waiting

time in each Emergency Level. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.16 Daily behavior of the number

of people waiting in each Emergency

Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.17 Daily behavior of the waiting

time in each Hospital. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.18 Daily behavior of the number

of people waiting in each Hospital

Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.19 Relation between the waiting time and the Hospital. . . . . . . . . . . . . . 36

3.20 Relation between the number of people waiting and the Hospital. . . . . . 36

3.21 Relation between the waiting time and the service in each Hospital. . . . . 37

3.22 Relation between the number of people waiting and the service in each Hospi-

tal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Sample from the dataset regarding only the hospital "Santa Maria". . . . . . 39

4.2 Architecture of memory cell cj (the box) and its gate units inj , outj . The self-

recurrent connection (with a weight of 1.0) indicates feedback with a delay of

one time step. It builds the basis of the "constant error carousel" (CEC). The

gate units open and close access to CEC [46]. . . . . . . . . . . . . . . . . . 47

4.3 Memory block with only one cell for the extended LSTM. A multiplicative

forget gate can reset the cells inner state sc [47]. . . . . . . . . . . . . . . . 48

4.4 A diagram of a Gated Recurrent Unit (GRU) block. The reset gate rt controls

whether ignoring the previous hidden state ht−1 or not. The update gate zt
decides whether the hidden state ht is to be updated with a new hidden state

h̃t [52]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xiv



4.5 Architecture of the Transformer model [53]. . . . . . . . . . . . . . . . . . 51

4.6 Scaled Dot-Product Attention [53]. . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Multi-head attention consists of several attention layers running in parallel

[53]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 The DL-Learner architecture is based on four component types. Each of these

component types can have its configuration options. A component manager

can be used to create, combine and configure components [57]. . . . . . . . 58

4.9 Sample of part of a knowledge base file. . . . . . . . . . . . . . . . . . . . . 59

4.10 Example of rules given by DL-Learner . . . . . . . . . . . . . . . . . . . . . 60

5.1 Comparison of the Mean Absolute Error (MAE) values of the best 3 non-

interpretable models and the best 3 interpretable models in the different emer-

gency levels. The prefix (a) after the interpretable model name means that the

best accuracy was achieved on the dataset without the information about the

waiting time of the previous day and the prefix (b) means that it was achieved

on the dataset with the information about the previous day. . . . . . . . . . 73

5.2 Comparison of the MAE values of all the interpretable models in the different

emergency levels on the dataset with the column regarding the type of service.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Relation between the number of relevant rules (rules given a non-null weight

by the regression equation) with the Mean Absolute Error in the different

emergency levels for RuleFit, Stable and Interpretable Rule Set (SIRUS), Rule-

fit with ElasticNet (REN)(2), REN(3), Interpretable Rules by DL-Learner and

Lasso Regression (RDLL), and Interpretable Rules by DL-Learner and Elas-

ticNet Regression (RDLE) on the dataset without the "service" column and

without the column containing information about the past. Emergency levels

1 (a) and 2 (b) are shown at the top (left and right, respectively), and emergency

levels 3 (c) and 4 (d) are shown on the bottom (left and right, respectively). 79

5.4 Relation between the number of relevant rules (rules given a non-null weight

by the regression equation) with the Mean Absolute Error in the different

emergency levels for RuleFit, SIRUS, REN(2), REN(3), RDLL, and RDLE on the

dataset containing information about the previous day without the "service"

column. Emergency levels 1 (a) and 2 (b) are shown at the top (left and right,

respectively), and emergency levels 3 (c) and 4 (d) are shown on the bottom

(left and right, respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Relation between the number of relevant rules (rules given a non-null weight

by the regression equation) with the Mean Absolute Error in the different

emergency levels for RuleFit, SIRUS, REN(2), REN(3), RDLL, and RDLE on

the dataset containing information about the type of service. Emergency levels

1 (a) and 2 (b) are shown at the top (left and right, respectively), and emergency

levels 3 (c) and 4 (d) are shown on the bottom (left and right, respectively). 81

xv



A.1 Relation between the number of rules given a non-null weight and the mean

absolute error of our implementation of RuleFit on the dataset without the

column regarding the service and without information about the past on the

different emergency levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2 Relation between the number of rules given a non-null weight and the mean

absolute error of our implementation of RuleFit on the dataset without the

column regarding the service and with information about the past on the

different emergency levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3 Relation between the number of rules given a non-null weight and the mean

absolute error of our implementation of RuleFit on the dataset with the column

regarding the service on the different emergency levels. . . . . . . . . . . . 96

A.4 Relation between the number of rules given a non-null weight and the mean

absolute error of SIRUS on the dataset without the column regarding the ser-

vice and without information about the past on the different emergency levels. 97

A.5 Relation between the number of rules given a non-null weight and the mean

absolute error of SIRUS on the dataset without the column regarding the ser-

vice and with information about the past on the different emergency levels. 98

A.6 Relation between the number of rules given a non-null weight and the mean

absolute error of SIRUS on the dataset with the column regarding the service

on the different emergency levels. . . . . . . . . . . . . . . . . . . . . . . . . 99

A.7 Relation between the number of rules given a non-null weight and the mean

absolute error of our three different REN implementations (running ElasticNet

one, two and three times) on the dataset without the column regarding the

service and without information about the past on the different emergency

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.8 Relation between the number of rules given a non-null weight and the mean

absolute error of our three different REN implementations (running ElasticNet

one, two and three times) on the dataset without the column regarding the

service and with information about the past on the different emergency levels. 101

A.9 Relation between the number of rules given a non-null weight and the mean

absolute error of our three different REN implementations (running ElasticNet

one, two and three times) on the dataset with the column regarding the service

on the different emergency levels. . . . . . . . . . . . . . . . . . . . . . . . . 102

A.10 Relation between the number of rules given a non-null weight and the mean

absolute error of the RDLL model on the dataset without the column regarding

the service and without information about the past on the different emergency

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.11 Relation between the number of rules given a non-null weight and the mean

absolute error of the RDLL model on the dataset without the column regarding

the service and with information about the past on the different emergency

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xvi



A.12 Relation between the number of rules given a non-null weight and the mean

absolute error of the RDLL model on the dataset with the column regarding

the service on the different emergency levels. . . . . . . . . . . . . . . . . . 105

A.13 Relation between the number of rules given a non-null weight and the mean

absolute error of the RDLE model on the dataset without the column regarding

the service and without information about the past on the different emergency

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.14 Relation between the number of rules given a non-null weight and the mean

absolute error of the RDLE model on the dataset without the column regarding

the service and with information about the past on the different emergency

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.15 Relation between the number of rules given a non-null weight and the mean

absolute error of the RDLE model on the dataset with the column regarding

the service on the different emergency levels. . . . . . . . . . . . . . . . . . 108

A.16 Relation between the alpha value in the Ridge regression equation and the

mean absolute error of the RDLR model on the dataset without the column

regarding the service and without information about the past on the different

emergency levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.17 Relation between the alpha value in the Ridge regression equation and the

mean absolute error of the RDLR model on the dataset without the column

regarding the service and with information about the past on the different

emergency levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.18 Relation between the alpha value in the Ridge regression equation and the

mean absolute error of the RDLR model on the dataset with the column re-

garding the service on the different emergency levels. . . . . . . . . . . . . 111

xvii





List of Tables

2.1 Mean model size over a 10-fold cross-validation for various public datasets.

Minimum size and maximum stability are in bold ("SIRUS sparse" put aside).

[28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Mean stability over a 10-fold cross-validation for various public datasets. Min-

imum size and maximum stability are in bold ("SIRUS sparse" put aside). [28]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Proportion of unexplained variance estimated over 10-fold cross-validation for

various public datasets. For rule algorithms only, i.e., RuleFit, Node harvest,

and SIRUS, minimum values are displayed in bold, as well as values within

10% of the minimum for each dataset ("SIRUS sparse" put aside). [28] . . . 21

3.1 Variables in each record of the dataset and their corresponding description. 28

3.2 Statistics regarding the waiting time (in minutes) in each emergency stage. 28

3.3 Statistics regarding the number of people waiting in each emergency stage. 29

4.1 Statistics regarding the first group of datasets. . . . . . . . . . . . . . . . . . 40

4.2 Statistics regarding the second group of datasets. . . . . . . . . . . . . . . . 41

4.3 Parameters for the best ARIMA model for each dataset. . . . . . . . . . . . 43

4.4 Parameters for the best SARIMA model for each dataset. . . . . . . . . . . . 43

5.1 MAE value for each emergency level in the dataset without the service column

for the baseline model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 MAE value for each emergency level in the dataset without the service column

for the SARIMA model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 MAE value for each emergency level in the dataset for the Prophet model. . 64

5.4 MAE value for each emergency level in the dataset for the LSTM model. . . 65

5.5 MAE value for each emergency level in the dataset for the GRU model. . . 65

5.6 MAE value for each emergency level in the dataset for the Transformer model. 66

5.7 MAE value for each emergency level in the dataset without the service column

for the RuleFit model using the Python package "rulefit". . . . . . . . . . . . 67

xix



5.8 MAE value for each emergency level in the dataset without the service column

for the RuleFit model using our implementation. . . . . . . . . . . . . . . . 67

5.9 MAE value for each emergency level in the dataset without the service column

and with a column regarding the waiting time of the previous day for the

RuleFit model using the Python package "rulefit". . . . . . . . . . . . . . . . 68

5.10 MAE value for each emergency level in the dataset without the service column

and with a column regarding the waiting time of the previous day for the

RuleFit model using our implementation. . . . . . . . . . . . . . . . . . . . 68

5.11 MAE value for each emergency level in the dataset with the service column

for the RuleFit model using the Python package "rulefit". . . . . . . . . . . . 68

5.12 MAE value for each emergency level in the dataset with the service column

for the RuleFit model using our implementation. . . . . . . . . . . . . . . . 68

5.13 MAE value for each emergency level in the dataset without the service column

for the SIRUS model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.14 MAE value for each emergency level in the dataset without the service column

and with a column regarding the waiting time of the previous day for the

SIRUS model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.15 MAE value for each emergency level in the dataset with the service column

for the SIRUS model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.16 MAE value for each emergency level in the dataset without the service column

for the REN models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.17 MAE value for each emergency level in the dataset without the service column

and with a column regarding the waiting time of the previous day for the REN

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.18 MAE value for each emergency level in the dataset with the service column

for the REN models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.19 MAE value for each emergency level in the dataset without the service col-

umn for the RDLL, RDLE, and Interpretable Rules by DL-Learner and Ridge

Regression (RDLR) models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.20 MAE value for each emergency level in the dataset without the service column

and with a column regarding the waiting time of the previous day for the

RDLL, RDLE, and RDLR models. . . . . . . . . . . . . . . . . . . . . . . . . 71

5.21 MAE value for each emergency level in the dataset with the service column

for the RDLL, RDLE, and RDLE models. . . . . . . . . . . . . . . . . . . . . 71

5.22 Number of Rules in each model for the dataset without the "service " column.

RuleFit (1) - Toolbox implementation of RuleFit, RuleFit (2) - Our implemen-

tation of RuleFit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.23 Number of Rules in each model for the dataset with the extra column regarding

the waiting time of the previous day. RuleFit (1) - Toolbox implementation of

RuleFit, RuleFit (2) - Our implementation of RuleFit. . . . . . . . . . . . . . 76

xx



5.24 Number of Rules in each model for the dataset with the "service " column. Rule-

Fit (1) - Toolbox implementation of RuleFit, RuleFit (2) - Our implementation

of RuleFit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.25 Number of parameters of the different non-interpretable models in the differ-

ent emergency levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Mean MAE values (in minutes) of the "black-box " models. . . . . . . . . . 84

6.2 Mean MAE values (in minutes) of the interpretable models. The two MAE

values on RuleFit represent the MAE of the automatic implementation on the

left and our implementation on the right. . . . . . . . . . . . . . . . . . . . 84

xxi





Acronyms

AIC Akaike Information Criterion 22, 42, 43

ANN Artificial Neural Network 23

ARIMA Autoregressive Integrated Moving Average 21, 22, 23, 41, 42, 43, 44, 45, 63,

64, 65, 66, 76, 83, 84

BIC Bayesian Information Criterion 22, 42, 43

BPTT Back-Propagation Through Time 45

CART Classification and Regression Tree 20

CEC Constant Error Carousel 46

CELOE Class Expression Learning for Ontology Engineering 58

ED Emergency Departments 21, 22, 23, 24, 25

GAM Generalized Additive Model 9, 10, 11

GBM Gradient Boosting Machines 23

GLM Generalized Linear Models 9

GRU Gated Recurrent Unit xiv, 41, 49, 50, 54, 63, 65, 66, 72, 76, 83, 84

ISLE Importance Sampled Learning Ensemble 15

LSTM Long Short-Term Memory 41, 45, 46, 48, 49, 50, 51, 54, 63, 64, 65, 66, 72, 76,

83, 84

MAE Mean Absolute Error xv, xix, xx, xxi, 25, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

73, 74, 78, 79, 80, 84

MAPE Mean Absolute Percentage Error 22, 23, 24

MART Multiple Additive Regression Trees 15

xxiii



MSE Mean Squared Error 23, 25, 65

MSPE Mean Squared Prediction Error 24

OLS Ordinary Least Square 25

RDLE Interpretable Rules by DL-Learner and ElasticNet Regression xv, xx, 61, 70,

71, 72, 75, 76, 78, 79, 80, 81, 83, 85

RDLL Interpretable Rules by DL-Learner and Lasso Regression xv, xx, 61, 70, 71,

72, 75, 76, 78, 79, 80, 81, 83, 84, 85

RDLR Interpretable Rules by DL-Learner and Ridge Regression xx, 61, 70, 71, 72,

75, 76, 77, 78, 83, 84, 85

REN Rulefit with ElasticNet xv, xx, 69, 70, 72, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85

RNN Recurrent Neural Network 41, 45, 46

RTRL Real-Time Recurrent Learning 45

SARIMA Seasonal Autoregressive Integrated Moving Average 22, 23, 41, 43, 64, 65, 66,

76, 83, 84

SIRUS Stable and Interpretable Rule Set xv, xix, xx, 11, 13, 17, 18, 19, 20, 21, 55, 56,

57, 66, 68, 69, 70, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85

SVM Support Vector Machines 23

xxiv



1

Introduction

1.1 Motivation

With the widespread use and continuous growth of machine learning, it is becoming a

necessity to understand how machine learning models work and make decisions. This

continuous growth comes from the increase both in computational power and in the

amount of available data which allows machine learning models to extract new knowl-

edge from [1].

Nowadays we have a machine learning model almost everywhere in our lives, let it

be in online shopping with recommendation systems or at our houses with a robot vacu-

uming our floors. We must not let these models become biased as they can easily become

discriminative against under-represented groups in the dataset. Since these models are

also being used in services like health and judicial courts this can deeply affect the life of a

person. To find out if a model is becoming biased or not we need to be able to understand

it and understand why it took a certain decision. This will not only allow us to reduce the

bias of the model but also improve it as we can understand why it took a certain wrong

action and correct it.

Interpretability has never been so important and could help avoid catastrophic con-

sequences since some of these machine learning models are being used in high-stakes

decisions. Moreover, we can not blindly trust a machine learning model for high-stakes

decisions that affect society. This could cause problems in many important domains like

healthcare and criminal justice. There is a wrong belief that creating methods to explain

these black-box machine learning models will solve the problem, when in fact, it can

make the problem even worse and cause great harm to society [2] as we will see.

Instead of trying to explain "black-box" machine learning models in high-stakes prob-

lems, we should be implementing interpretable models instead.

This thesis will test if we can have an interpretable model with comparable accuracy

to a black-box model in a particular high-stakes problem. Specifically, this thesis will try

to predict the waiting time in the emergency department in the hospital Hospital Santa
Maria with an interpretable model.
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CHAPTER 1. INTRODUCTION

1.2 Why should we use interpretable machine learning

Every day we have more and more machine learning algorithms in our life, some of them

making decisions for us with some of those decisions being high stake decisions like

deciding how long a person should stay in prison. This is why interpretability in machine

learning is becoming extremely important. We can not blindly trust a machine learning

algorithm without understanding it, we may be taking a wrong decision only because the

algorithm told us without understanding why.

The existing black-box machine learning models are too complicated to understand

(which is why they are called black-box models) and are hard to troubleshoot. Moreover,

these models sometimes have undesired behaviors and predict the right answer for the

wrong reasons, which may lead to poor performance outside the training data. An exam-

ple of this is shown in the paper [3] where they found that the model was labeling horses

just because the images had the same source tag in the left lower corner and not because

of the horse in the image as can be seen in figure 1.1. Another example is in criminal

justice where individuals may have got more years of extra prison time due to an error in

the black-box model inputs which could have been avoided if an interpretable model was

used instead since the reason for the prison time would have been understandable [4].

Figure 1.1: A model trained on the PASCAL VOC 2007 dataset identifies a horse on the
image by focusing on the source tag presented in the lower left corner. When the tag is
removed the model can not classify the figure as a horse anymore [3].

Explaining black-box models raises problems as the process only ensures a high cor-

relation between the prediction of the explanation and the prediction of the black-box,

and thus it may fail to represent the causal relation between input feature and prediction;

there could be more than a single explanation to the same black-box that looks different

and they may not be robust and vary significantly with a small perturbation to input data.
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Considering these problems, the explanation of the black-box models may be misleading

[5].

Interpretable machine learning models are clearly needed. Explaining black-box

models instead of having an interpretable one can make the problem of not understanding

the model even worse since it can mislead us.

There is literature where the interpretability of a model is confused with its explain-

ability, which is something we will clearly differentiate here. There is also literature that

explains black-box models without considering if there is an interpretable model with

the same accuracy.

1.2.1 Interpretability

Interpretability is a domain-specific notion [6], so there is no all-purpose definition.

Mathematically, it is very difficult to define interpretability. Non-mathematically we

can think of interpretability as the degree to which a human can understand the cause of

a decision [7]. With this definition, we can compare the interpretability of two models

by comparing how easy it is to comprehend why the decisions or predictions were made

by a machine learning model, the easier it is, the higher its interpretability is. One way

of doing this comparison is by comparing how easy it is for a human to comprehend the

decisions from the different models [8].

Interpretable machine learning can be seen as the extraction of relevant knowledge

from a machine learning model, where this knowledge can come either from the data or

learned by the model [9].

1.2.1.1 Importance of Interpretability

Sometimes when we have a predictive model we do not want to know why the prediction

was made, instead we only want to know what the prediction is. But in other problems,

we may want to know why the prediction was made so we can learn more about the

problem, the data, and the reasons why a model might fail. If we have a model being

used in a low-risk environment, where it does not have serious consequences (like an

advertiser system) we may not need to know why the predictions are made. The need for

interpretability comes from problems or tasks where it is not enough to get the prediction,

where we also need an explanation about how the model made the prediction that because

a correct prediction only solves part of the problem.

One of the reasons that drive the demand for interpretability according to [10] is

human curiosity and learning. When we use black-box machine learning models in

research the scientific findings remain hidden, since only the model knows how it found

them and does not explain its predictions to humans. To make it easier to learn and

satisfy human curiosity it is crucial that the predictions or behaviors of machine learning

models are interpretable and explainable.
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Another reason for this demand for interpretability is the human desire to find mean-

ing in the world and harmonize contradictions or inconsistencies between elements of

our knowledge structures. In science, we want to gain knowledge, but sometimes we use

black-box models to solve the problems, and only the model gains knowledge. To extract

this knowledge from the model we need it to be interpretable.

When machine learning models are used in real-world tasks that require safety mea-

sures and testing, like a self-driving car, we need to be 100% sure that the system is

error-free otherwise it could have serious consequences. By being able to interpret and

understand the model we can think about cases that we would not think about before

since we would not know what are the most important learned features for our model.

Machine learning models usually get biased from the training data, and this can make

a model racist by discriminating against underrepresented groups. Interpretability allows

us to detect bias in machine learning models.

Integrating machine learning models and algorithms into our daily lives requires

interpretability to increase social acceptance. People will accept more machines and

algorithms that they can understand, and for that, the machines or algorithms need to be

interpretable so they can explain their predictions.

By creating a shared meaning of something, an explainer influences the recipient

actions, emotions, and beliefs. Explanations are used to manage social interactions. This

is also valid for machines, they have to "persuade" us somehow that they can achieve their

goal, otherwise we would not use them.

1.2.1.2 Scope of Interpretability

Each step of a machine learning algorithm that trains a model to produce predictions can

be evaluated in terms of transparency or interpretability.

The transparency of an algorithm is about understanding how the algorithm works,

how the model is learned from the data, and what kind of relationships it can learn, but

not for a specific model. Algorithm transparency does not require knowledge about the

data or learned model, only about the algorithm used.

If an entire model can be comprehended at once, it can be described as an interpretable

model [11]. This kind of model allows us to understand how it makes decisions based on

a total view of its features and learned components. To explain the global model output

we need everything: knowledge of the algorithm, the trained model, and the data. With

these, we can also say which features are more important and what kind of interactions

between the features take place.

Global model interpretability on a modular level is when we can easily understand a

single weight for example in a Naive Bayes model but can not manage to memorize all

the weights. While global model interpretability is usually very hard to get, there is a

good chance of understanding at least some models on a modular level. For linear models,
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the interpretable parts are the weights but for trees, it would be the splits and leaf node

predictions.

When we can analyze a single instance and understand why the model predicted

something for a given input, we have local interpretability for a single prediction. The

prediction might only depend linearly or monotonically on a few features instead of

having a complex dependence on them.

Local interpretability for a group of predictions is when we can explain the model

predictions for multiple instances. This can be achieved either with global model interpre-

tation methods (on a modular level) or with explanations of individual instances. With

the global model interpretation method, we can take a group of instances and treat them

as if the group were the whole dataset and use the global methods with this subset. With

the individual explanation method, we use it on each instance and then list or aggregate

the entire group.

1.2.2 Interpretable Machine Learning Fundamentals

There are 5 fundamental principles for interpretable machine learning according to [12].

The first principle is "An interpretable machine learning model obeys a domain-

specific set of constraints to allow it to be more easily understood by humans. These

constraints can differ dramatically depending on the domain."

An interpretable supervised learning setup, where {zi}i represents the data, and the

models are chosen from function class F is:

min
f ∈F

1
n

∑
i

Loss(f,zi) +C·Interpretability Penalty(f ),

subject to Interpretability Constraint(f ).

The loss function and the interpretability constraints are chosen to match the domain.

These constraints make the resulting model f or its predictions more interpretable and

we can use the constant C to trade-off between accuracy and interpretability of the model.

We can tune this constant C and sacrifice either accuracy for more interpretability or

interpretability for more accuracy either by cross-validation or by the desired tradeoff.

We can use the same equation for unsupervised learning, but in this case, the loss

term is replaced with a loss term for the unsupervised problem.

Interpretability differs across domains and there are so many different interpretability

metrics that we might choose from a combination of them that are specific to the domain

we are working on. We may not be able to define the best definition for interpretability

but if our chosen interpretability measure is helpful, we should use it.

The second principle is: "Despite common rhetoric, interpretable models do not

necessarily create or enable trust - they could also enable distrust. They simply allow

users to decide where to trust them. In other words, they permit a decision of trust, rather

than trust itself."
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When using a black-box model, we make decisions about trusting the model or not

with much less information, we do not have the knowledge about the reasoning process

of the model and we also do not know if it will generalize outside of the training data.

In [13] the authors study the ethical implementation of AI to select embryos in In Vitro

Fertilization and they state that clinicians should explain the basis of how embryos are

selected for transfer, whether it is clinical or AI-assisted. This is not possible if the clini-

cians do not know how the AI model chose that specific embryo, just like the patient is

trusting the clinician, the clinician is trusting the AI model not knowing how he chose it.

While interpretable AI is an enhancement of human decision-making, black-box AI is a

replacement for it.

The third principle states that it is important to not assume that to improve inter-

pretability one needs to sacrifice accuracy. Interpretability often improves accuracy and

not the opposite. "Interpretability versus accuracy is, in general, a false dichotomy in

machine learning" [12].

Interpretability and complexity have been traditionally associated, specifically inter-

pretability and sparsity. Usually, sparsity is one component of interpretability, and there

is almost always a tradeoff between accuracy with sparsity but there is no evidence of a

tradeoff between accuracy with interpretability. In fact, as stated in [14] Interpretability

might even improve accuracy, as it permits an understanding of when the model might

be incorrect.

In [15] the authors show that it is possible to build sparse rule lists (decision trees) that

have an accuracy comparable to COMPAS, which is a black-box model used to predict

criminal recidivism because no one outside of its designers knows its secret formula and

yet it is used widely across the United States. This is an example where a black-box model

is used unnecessarily since an interpretable model could be used instead with comparable

accuracy.

For problems where we have "raw" data, such as images, sound files, or text, where

each pixel, bit, or word is not useful on its own, neural networks currently have an

advantage over other approaches as shown in [16]. In [17] the authors show that even

neural networks can benefit from being interpretable. In their experiments, they compare

the interpretability, average relative location deviations for multi-category classification,

and classification accuracies based on different datasets between a normal neural network

and an interpretable neural network. The results they got show that interpretable neural

networks not only are more interpretable but also have much better location stability and

still have better accuracy than ordinary convolutional neural networks.

These are some clear examples where having an interpretable model instead of a

black-box model would not result in a loss of accuracy and could even improve it.

The fourth principle is: "As part of the full data science process, one should expect

both the performance metric and interpretability metric to be iteratively refined."

It is useful to create many interpretable models that satisfy the known constraints

and have domain experts choose between them. Since the definition of interpretability
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may vary depending on our problem, the reason why the experts choose one model over

another helps us to refine the definition of interpretability in our problem.

The fifth principle is that for high-stakes decisions, interpretable models should be

used if possible, rather than "explained" black-box models.

As stated previously, explaining black-boxes can be misleading and generally they

do not serve their intended purpose. These problems have arisen with the assessment

of fairness and variable importance, and in [18] the authors introduce a method that

modifies an existing model and downgrades feature importance of key sensitive features

across six explanation methods and unseen test points across four datasets while keeping

a similar accuracy. They demonstrate that many popular used explanation methods are

not able to indicate if a model is fair or not reliably. It raises concerns about relying

on explanation methods to measure or enforce standards of fairness. Black-box models

are also more difficult to troubleshoot and if the explanation model is not correct, it

can be difficult to tell if it is the black-box model that is wrong or if it is right and the

explanation model is wrong. Another issue with explaining black-box models is that

the explanations themselves could contain significant uncertainty that undermines users

trust in the predictions and raises concern about the robustness of the models as stated

in [19].

Generally, black-box models do not have better accuracy than a well-designed inter-

pretable model[12], and explanations that seem reasonable can lead to a lack of interest

in finding an interpretable model with the same accuracy as the black-box model.

Explaining a black-box model is often used as an excuse to use it instead of trying to

find an interpretable model instead. Not only that, but it also gives even more authority

to the black-box model that could be wrong [14].

1.2.3 Problems with explaining black-box machine learning models

A black-box model can be either a model that is too complicated for any human to under-

stand or a model that is proprietary. Deep learning models, for example, usually are black

boxes of the first type due to their high recursivity. An explanation of a black-box model

is a separate model that is supposed to replicate most of the black-box model behavior

[2].

Explanations of black-box models are not faithful to what the original model com-

putes, otherwise, the explanation model would equal the original model and we would

not need the black-box model in the first place, only this explanation model which would

be an interpretable model. This leads to the danger mentioned in [20], any explanation

model for a black-box can be inaccurate in parts of the feature space.

An inaccurate explanation model limits trust in the explanation, and by consequence,

in the black-box model that it is trying to explain. Even if an explainable model has a 95%

agreement with the black-box model, it will be wrong 5% of the time and we do not know

when it is correct or incorrect and therefore cannot trust the explanations. Consequently,
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Figure 1.2: Saliency does not explain anything, it only shows us where the network
is looking at. We have no idea why this image is labeled as either a dog or a musical
instrument when considering only saliency. The explanations look almost the same for
both classes. Credit: Chaofen Chen, Duke University [2].

we cannot trust the original black-box. If we cannot trust for certain in our explanation

model, we cannot trust the black-box model that it is trying to explain.

The explanations for complex black-box models hide the fact that these are difficult

to use in practice. An example of this is shown in [4], mentioned before, where a typo-

graphical error leads to extra time in jail. It is easier to make an error in a model with

130 hand-typed inputs than in one involving just 5 hand-typed inputs.

Even if the explanation model is correct in its approximation of the black-box model

and the original black-box is correct in its prediction, it is still possible that the expla-

nation does not explain everything. In [2] the author gives us an example from image

processing where saliency maps are used. These maps are often considered explanatory

and can be useful to know what parts of the images are being used, but it does not explain

how these parts of the images are being used. Knowing where the model is looking within

the image does not explain to the user what it is doing with those pixels as illustrated in

figure 1.2. The saliency maps for multiple classes could be essentially the same, and this

happens in figure 1.2, where the saliency maps give us almost the same explanation as

to why the image might contain a Siberian husky and why it might contain a transverse

flute.

An unfortunate trend is to show explanations only for the observations that were

correctly labeled when demonstrating the explanation method. This can be misleading

and establish a false sense of confidence both in the explanation method and consequently

in the black-box model.

Troubleshooting a black-box model may be flawed and we do not know it because it

is difficult to troubleshoot. Having an explanation model of it may not help and it makes

the problem even worse because now we must troubleshoot two models instead of just

one.
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1.2.4 Sparse and Logical Models

In problems where we have tabular data where the features are meaningful, sparsity is

often used as a measure of interpretability of the model. Sparsity is an important measure

since humans can only handle 7±2 cognitive entities at once [21]. Sparsity in machine

learning makes it easier to troubleshoot the model, check for typographical errors, since

there will be less to check, and reason about counterfactuals. Sparsity is seldom the only

consideration for interpretability, but by designing a sparse model, it often can handle

additional constraints. By optimizing for sparsity, we can establish a baseline for how

sparse a model could be with a particular level of accuracy

Despite all these advantages, it is not always a good idea to have more sparsity. As

stated in [22], humans are mentally opposed to too simplistic representations of complex

relations. An example where having a very sparse model is not a good idea is in medicine

where a single symptom rarely allows for good predictive power.

Logical models are models that consist of logical statements. They involve "if-then",

"or" and "and" clauses and are one of the most popular algorithms for interpretable ma-

chine learning. This is because they provide a human-understandable reason for each of

their predictions. These models are often a very good choice to model categorical data

with potentially complicated interaction terms and for multiclass problems. They are

also robust when data have outliers and can easily handle missing data. Logical models

can also be highly nonlinear and even classes of sparse nonlinear models can be very

powerful.

In Figure 1.3 we can visualize three different logical models, on the left of the figure

we have a decision tree, on the top right a decision list, and on the lower right, we have a

decision set. Decision trees are predictive models that have the structure of a tree where

each leaf node makes a prediction and to get to the leafs each brand node tests a condition.

Just like rule lists, decision lists are composed of if-then-else statements where the rules

are tried in order and the first satisfied rule makes the prediction. Unlike decision trees,

rules in a decision list may have multiple conditions in each split. Decision sets are made

of an unordered collection of rules that are a conjunction of conditions and a positive

prediction is made if at least one of the rules is satisfied.

1.2.5 Generalized Additive Models

Generalized Additive Model (GAM) present a flexible extension of Generalized Linear

Models (GLM), allowing arbitrary functions to model the influence of each feature on a

response. The set of GAMs includes the set of additive models, which includes the set of

linear models which includes scoring systems. This hierarchy can be seen in figure 1.4.

The standard form of a GAM can be seen in the following equation

g(E[y]) = β0 + f1(x.1) + ...+ fp(x.p)

9
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Figure 1.3: Predicting which individuals are arrested within two years of release by
a decision tree (a), a decision list (b), and a decision set (c). The dataset used is the
ProPublica recidivism dataset [23] [12].

Figure 1.4: Hierarchical relationships between GAMs, additive models, linear models,
and scoring systems [12].

where g(·) is a link function, E[y] is the expectation of y, x.i indicates the ith feature

and fj ’s are univariate component functions that are possibly nonlinear. The expression

describes an additive model (such as a regression model) if g(·) is the identity. The

expression describes a generalized additive model that can be used for classification if g(·)
is the logistic function. This standard form of GAMs is interpretable because the model is

constrained to be a linear combination of univariate component functions. We can even

plot each component function individually and see the contribution of a single feature

to the prediction. The GAM becomes a linear model if the features are all binary and

the resulting visualization are just step functions. If the GAM has bivariate component

functions, that is, if fj depends on two variables, according to [24] we can visualize these

two-dimensional interactions using a heatmap and understand the pairwise interactions.

Contrary to decision trees, which are capable to handle complex interactions of cate-

gorical variables, GAMs usually do not handle more than a few interaction terms.

The fj component function can have many forms. If we consider that they take the

form of the weighted sum of indicator functions, we can represent them as:

10
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fj(x.j ) =
∑

thresholdsj ′
cj,j ′1[x.j > 0j ′ ] (1.1)

GAM becomes a scoring system if the weights on the indicator functions are integers

and only a small set of weights are nonzero. In (1.1), all the indicators are forced to aim

in one direction (1[x.j > 0j ′ ]), if to this we add the constraint that all coefficients have to

be nonnegative, then the function will be monotonic, this is, is entirely nonincreasing or

nondecreasing.

We can fit GAMs in many different ways, but the traditional way is to use back fitting.

In [25] different procedures for fitting GAMs are compared and the results show that

boosting performed slightly better than all the other procedures. In [26] they found that

using size-limited bagged trees on gradient boosting generally achieved better perfor-

mance.

GAMs simplicity comes from their sparsity in the number of component functions

and smoothness of these functions. When we have prior knowledge (for example if

risk increases with age) we can improve the interpretability of the GAM by imposing

monotonicity of the component functions.

1.3 Objectives

With this dissertation we aim to introduce four novel rule-based machine learning models,

three of which use the DL-Learner software, which uses a logic reasoner to create and

choose the best and shortest rules. Moreover, we compare our new models with two other

rule-based machine learning algorithms (RuleFit and SIRUS) and test if interpretable

machine learning models can have comparable accuracies to black box machine learning

models in a specific high-stakes scenario, which is the prediction of the waiting time in

the Emergency Department in the hospital "Santa Maria".

In the next chapter, we will start by studying the current state-of-the-art rule-based

models, which are the RuleFit and SIRUS, and how other studies have tried to predict the

affluence and waiting time in Emergency Departments of different hospitals across the

world.
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2

State of the art

2.1 Interpretable Machine Learning Models

One way of having an interpretable machine learning algorithm is to build a rule-based

tree learning algorithm. In this chapter we will study two rule-based tree methods (Rule-

Fit and SIRUS) that are intrinsically interpretable, that is, the interpretability in these

models is achieved by restricting their complexity.

2.1.1 RuleFit

Besides being interpretable, rule-based tree learning algorithms are shown to produce

predictive accuracies comparable to the best methods in regression and classification

problems [27]. These models are constructed as linear combinations of simple rules de-

rived from the data where each rule has a simple form and therefore is easy to understand

as is its influence on predictions.

RuleFit makes use of one of the most powerful learning methods which are the learn-

ing ensembles. By using rules in an ensemble learning RuleFit can be described as a

rule-based ensemble that takes the following form

F(x) = a0 +
M∑
m=0

amfm(x)

where f represents the different elements of the ensemble, a the coefficient of each

ensemble, M the size of the ensemble used, and F(x) the prediction of the ensemble.

Each ensemble method has its base learners, {fm(x)}M1 , a method to derive them from

the data, and a method to obtain the linear combination parameters. One approach to

get the linear combination parameters with a given set of base learners is to use the

regularized linear regression Lasso on the training data {xi , yi}N1 . The Lasso regression

solution can be described as follows

{âm}M0 ∈ argmin
{am}M0

N∑
i=1

L

yi , ao +
M∑
m=1

amfm(xi)

+λ ·
M∑
m=1

| am | (2.1)
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where L is the loss function, which may be any loss function chosen according to the

problem, and λ is the regularization parameter. The Lasso regression induces sparsity,

meaning that many coefficients will be set to zero and the corresponding rules will not

be included.

Each rule in a rule-based ensemble can be written as (rm)

rm(x) =
n∏

j=1
I(xj ∈ sjm)

where I is the indicator of the truth of each argument, that is, I(x) = 0 if the argument

is false and I(x) = 1 if the argument is true. As a result, each base learner will have a value

of 1 or 0. It takes the value 1 if the conditions are all true otherwise it takes the value 0.

To be more interpretable the ensemble should have simple rules, each defined by a

small number of variables. For example, the rule ry(x) shown below is defined by three

variables and a value of 1 means that all the conditions are met, meaning that the person

has an age between 18 and 34, is single, or lives with another person but is not married

and is renting a house. Since every number multiplied by 0 results in 0, the outcome of

the multiplication will be 0 if atleast one of the requirements is not satisfied. On the other

hand, a value of 1 in this example increases the odds of frequenting bars and nightclubs.

ry(x) =


I(18 ≤ age ≤ 34)

·I(marital status ∈ {single, living together-not married})

·I(householder status = rent)

The rules in a rule ensemble method can be generated by a tree algorithm. This

allows us to take advantage of the existing fast algorithms to produce decision trees and

use these decision trees as base learners for our rule ensemble where each node of each

tree produces a rule.

The size of the trees is proportional to the complexity of the rules that they allow to

produce, larger trees can produce more complex rules since each rule may have more

variables (factors) defining it. The more complex a rule is the more interactions among the

variables it will be able to capture. High order interaction effects require larger trees, but

the larger the tree the harder the rules are to understand, making them less interpretable.

Besides the loss of interpretability, having ensembles that have a large fraction of high

order interaction rules will make them worse to capture low order interaction effects,

since smaller trees are better for these latter targets. A strategy found that solves this

problem is producing an ensemble of trees of varying sizes, this way we can capture both

high and low order interaction effects.

2.1.1.1 Comparison between rule-based and tree-based ensembles

An important measure in every learning method is accuracy, which is the percentage

of correct predictions for the test data. In the paper, [27] the authors compared the

14
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Figure 2.1: Inaccuracy comparisons between tree ensemble methods (Mart, ISLE) and
rule based ensembles (RuleFit, RuleFit 200) [27].

performance of four based ensemble methods, two rule-based ensemble methods, and

the two best tree-based ensemble methods over the 100 datasets used. The two tree-

based ensemble methods were Multiple Additive Regression Trees (MART), which is a

tree boosting method, and Importance Sampled Learning Ensemble (ISLE). The two rule-

based ensemble methods were two different RuleFit methods, one that extracted the ten

rules associated with each of the trees in the first 500 trees (resulting in 5000 rules) and

one that extracted the ten rules associated with each of the trees but only in the first 200

trees (resulting in 2000 rules). By comparing the average absolute error, comparative

absolute error, error rate and, comparative error rate, RuleFit (the one using the first 500

trees) was almost always the best in every dataset tested, followed by the RuleFit 200 in

the classification problems. This comparison can be seen on figure 2.1.

These results suggest that the rule-based approach to ensemble learning produces

comparable predictions to those based on decision trees.
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2.1.1.2 Approximating Linear basis functions

Linear basis functions are among the most difficult ones for rule and tree-based ensembles

to approximate. These functions usually have a substantial number of coefficients with

relatively large absolute values and such targets can require a large number of rules for

accurate approximation, especially if the training sample is not large and/or the signal-

to-noise ratio is small.

A solution for this problem is to include the original variables {xj}n1 as additional

basis functions to complement the rule ensemble, this way the linear behavior is directly

included in the model.

With these additions, the predictive model can be written as

F(x) = â0 +
K∑
k=1

âkrk(x) +
n∑

j=1
b̂j lj(xj )

where {am}M0 correspond to the parameters specifying the particular linear combination,

K is the number of rules, rk(x) are the binary features for the rules generated by the tree

ensemble, n is the number of original variables and lj(xj) are the features representing

the original variables.

2.1.1.3 Relevance of rules

The rules generated represent easily understandable functions of the input variables, just

like the linear functions. Besides that, the predictors have varying coefficients values

depending on their estimated predictive relevance, so we can easily know which are the

most important predictors. The relevance of a rule, Ik is given by

Ik = | âk | ·
√
sk(1− sk)

where sk is the rule support. For the linear predictors, the corresponding relevance is

Ij = | b̂j | · std ( lj(xj ) )

where std ( lj(xj) ) is the standard deviation of lj(xj) over the data. These importances

are global, meaning that they reflect the average influence of each predictor over the

distribution of all joint input variables. To measure the influence of the rules at a specific

point x, this is, the local influence, we can calculate

Ik(x) = | âk | · | rk(x)− sk |

and for linear terms the corresponding is

Ij = | b̂j | · | lj(xj )− l̄j |
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where l̄j is the mean of lj(xj ) over the training data. These quantities measure the absolute

change in the prediction F(x) when the corresponding predictor is removed from the

predictive equation.

Another important measure is the relative importance or relevance of the input vari-

able Jl(x) to the predictive model. The most relevant input variables are those that prefer-

entially define the most influential predictors appearing in the model. This measure can

be calculated as

Jl (x) = Il (x) +
∑

xl∈rk
Ik(x)/mk

where Il(x) is the importance of the linear predictor involving xl , Ik is the importance of

the rule predictor and mk is the total number of input variables that define the rule.

2.1.2 SIRUS

Stable and Interpretable Rule Set (SIRUS) [28] is an example of another algorithm that is

based on a random forest and takes the form of a short and simple list of rules.

State-of-the-art learning algorithms are often black-boxes because of the high number

of operations involved in their prediction process. This lack of interpretability may be

highly restrictive for applications with critical decisions at stake. On the other hand, algo-

rithms with a simple structure are known for their instability. This makes the conclusions

of the data analysis unreliable and is a strong limitation.

Unlike RuleFit, SIRUS is not sensitive to data perturbations and does not produce a

long, complex, and unstable list of rules. Therefore SIRUS can improve stability, which is

described as the number of rules that are kept the same after a slight perturbation in the

training set, and simplicity which refers to the number of rules kept by each model while

still maintaining comparable accuracy.

Decision trees can model non-linear patterns while having a simple structure. They

are therefore presented as interpretable. However, the structure of trees is very sensitive

to small data perturbation. Rule algorithms are another type of nonlinear method with

a simple structure, defined as a collection of elementary rules. An elementary rule is a

set of constraints on input variables, this forms a hyperrectangle in the input space on

which the associated prediction is constant. The problem with these algorithms is that

even though they have a high predictivity and simplicity, they share the same limitations

as decision trees, they are unstable.

Its general principle is that since each node of each tree of a random forest can be

turned into an elementary rule, the idea is to extract the most frequent rules from the

tree ensemble(the random forest). The most frequent rules represent robust patterns in

the data and are linearly combined to form predictions.
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2.1.2.1 SIRUS Algorithm

The objective of the SIRUS algorithm is to estimate the regression function with a small

and stable set of rules.

The SIRUS algorithm can be divided into 4 main stages.

The first stage of SIRUS is to generate rules. SIRUS creates a random forest with a

large number of trees based on the available sample Dn (n is the number of observations).

A critical feature of this approach to guarantee the stability of the forest structure is to

restrict node splits. After obtaining the forest, it is broken down into a large collection

of rules. Since each node of each tree of the final ensemble defines a hyperrectangle in

the input space, then, each one of them can be turned into an elementary regression rule

by defining a constant estimate whose value solely depends on whether the query points

are inside the hyperrectangle or not. The path P , which represents the order of splits to

reach a node from the trees root, is used to represent a node in a tree.

The second stage of SIRUS is where the rules are selected from the random forest, since

not all rules are revelant. Despite the randomization while construction the forest, there

are redundant rules. The chosen rules will be those with a high frequency of appearance,

since these represent strong and robust patterns in the data. The occurrence frequency is

denoted by P̂M,n (P ) for each possible path P ∈
∏

where
∏

represents the finite list of all

possible paths. Then a threshold p0 ∈ (0,1) is used to select the relevant rules, that is

P̂M,n,p0 = { P ∈
∏

: p̂M,n, (P ) > p0 }

The threshold p0 is a tuning parameter whose optimal values select rules made of

one or two splits. Greater sensitivity to data perturbation is related with rules that have

more splits, therefore are also associated with lower values of PM,n (P ). In conclusion, the

selected rules will be those which have fewer splits, which are the rules less sensitive to

data perturbations and therefore have better stability.

The third stage of SIRUS is the rule set post-treatment. The set of distinct paths P̂M,n,p0

is dependent on the path extraction mechanism. The linearly dependent rules, this is, the

rules that have overlapping hyperrectangles are filtered in this stage. Let ra be the rule

induce by the path P ∈ P̂M,n,p0
SIRUS filters the rules with the following criteria: if ra is a

linear combination of rules associated with paths with a higher frequency of appearance,

then P is removed from P̂M,n,p0
.

The fourth and last stage is rule aggregation. After the previous stage, we obtain

a small set of regression rules. Each rule ĝn,P associated with a path P is a piecewise

constant estimate: if a query point falls inside the hyperrectangle defined by the rule,

the rule returns the average of the Yi ’s for the training points Xi ’s that belong to that

hyperrectangle. In case the point falls outside the hyperrectangle defined by the rule,

the rule returns the average of the Yi ’s for training points outside of the hyperrectangle.

After this, a non-negative weight is associated with each of the selected rules to combine

them into a single estimate of m(x). These weights are defined by the ridge regression

18



2.1. INTERPRETABLE MACHINE LEARNING MODELS

solution and constrained to be non-negative, where each predictor is a rule ĝn,P for P ∈
P̂M,n,p0

. The aggregated estimate m̂M,n,p0
(x) of m(x) computed in this stage can be written

in the form

m̂M,n,p0
(x) = β̂0 +

∑
P ∈P̂M,n,p0

β̂n,P ĝn,P (x)

where β̂0 and β̂n,P are the solutions of the ridge regression problem that can be ob-

tained from

(β̂n,P , β̂0) = argmin
β≧0,β0

1
n
∥ Y − β01n − Tn,p0

β ∥22 +λ ∥ β ∥22 (2.2)

where Y = (Y1, ...,Yn)T , Tn,p0 is the matrix whose rows are the rules values ĝn,P (Xi)

for i ∈ {1, ...,n}, 1n = (1, ...,1)T is the n-vector with all components equal to 1 and λ is a

positive parameter tuned by cross-validation that controls the penalization severity.

2.1.2.2 Comparing interpretable models

Just like in SIRUS, in RuleFit the rules are also extracted from a tree ensemble, the

difference is that RuleFit uses the regularizer Lasso to aggregate them. The problem with

using this regularizer is that Lasso is highly unstable when features are highly correlated

and the rules are highly correlated by construction. This makes RuleFit unstable and is

one of the advantages of SIRUS over RuleFit. SIRUS manages to stay stable by using the

parameter p0 to control sparsity and the ridge regression to enable a stable aggregation

of the rules.

When comparing different interpretable algorithms we can use three different mea-

sures: their simplicity, stability, and predictivity. The simplicity of a model is the number

of operations involved in the prediction mechanism, in a rule-based algorithm like SIRUS,

the simplicity is given by the number of rules. For the stability, let P̂ ′M,n,p0 be the list of

rules output by SIRUS on an independent sample D ′n. To measure the stability of the

model we can use the Dice-Sorensen index and calculate the proportion of rules shared

by P̂M,n,p0 and P̂ ′M,n,p0 with the following formula:

ŜM,n,p0 =
2|P̂M,n,p0∩P̂ ′M,n,p0|
|P̂M,n,p0|+|P̂ ′M,n,p0|

Usually, we do not have access to an additional sample D ′n so we use 10-fold cross-

validation instead to simulate data perturbation. The stability is given by the average

proportion of rules shared by two models of two distinct folds of the cross-validation.

This will give us a value of 1 if the same list of rules is selected over the 10 folds and a

value of 0 if all rules are distinct between any 2 folds.

To calculate the predictivity of the model in regression problems we use 10-fold cross-

validation and get the proportion of unexplained variance.
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In the paper, [28] the authors compare SIRUS simplicity, stability, and predictivity

with its two main competitors RuleFit and Node harvest over 8 different datasets. To

have a baseline for predictive accuracy they also ran Random Forest and CART. The

results of their experience can be seen in the tables 2.1, 2.2 and 2.3 where SIRUS stability

is considerably better with much smaller rule lists than any of the other algorithms,

therefore with better simplicity, while still maintaining a comparable predictivity to

Node harvest and only slightly worse than RuleFit.

Dataset CART RuleFit Node harvest SIRUS SIRUS sparse
Ozone 15 21 46 11 10
Mpg 15 40 43 10 10
Prostate 11 14 41 9 12
Housing 15 54 40 6 61
Diabetes 12 25 42 12 15
Machine 8 44 42 9 7
Abalone 20 58 35 8 13
Bones 17 5 13 1 1

Table 2.1: Mean model size over a 10-fold cross-validation for various public datasets.
Minimum size and maximum stability are in bold ("SIRUS sparse" put aside). [28]

Dataset RuleFit Node harvest SIRUS SIRUS sparse
Ozone 0.22 0.3 0.62 0.63
Mpg 0.25 0.43 0.77 0.76
Prostate 0.32 0.23 0.58 0.59
Housing 0.19 0.40 0.82 0.82
Diabetes 0.18 0.39 0.69 0.65
Machine 0.23 0.29 0.86 0.84
Abalone 0.31 0.38 0.75 0.74
Bones 0.59 0.52 0.96 0.78

Table 2.2: Mean stability over a 10-fold cross-validation for various public datasets. Min-
imum size and maximum stability are in bold ("SIRUS sparse" put aside). [28]

The difference between algorithms that use a loss function and tree algorithms like

SIRUS in learning is that instead of trying to minimize a loss function, SIRUS tries to

choose splits that maximize the CART-splitting criterion. Starting from the root SIRUS

tries to choose the best split in each node to reach another given node.

The set of all possible paths is defined as
∏

. The probability p∗(P ) that a given path P

belongs to a theoretical randomized tree in SIRUS is

p∗(P ) = P(P ∈ T ∗(θ))

where T ∗(θ) is the list of all paths contained in the theoretical tree built with random-

ness θ in which splits are chosen to maximize the theoretical CART-splitting criterion.

The theoretical set of selected paths is P ∗p0 = {P ∈
∏

: p∗(P ) > p0}, where p0 ∈ [0,1] .
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Dataset Random
Forest

CART RuleFit Node
harvest

SIRUS SIRUS
sparse

SIRUS
50 rules

Ozone 0.25 0.36 0.27 0.31 0.32 0.32 0.26
Mpg 0.13 0.20 0.15 0.20 0.20 0.20 0.15
Prostate 0.48 0.60 0.53 0.52 0.55 0.51 0.54
Housing 0.13 0.28 0.16 0.24 0.30 0.31 0.20
Diabetes 0.55 0.67 0.55 0.58 0.56 0.56 0.55
Machine 0.13 0.39 0.26 0.29 0.29 0.32 0.27
Abalone 0.44 0.56 0.46 0.61 0.66 0.64 0.64
Bones 0.67 0.67 0.70 0.70 0.73 0.77 0.73

Table 2.3: Proportion of unexplained variance estimated over 10-fold cross-validation for
various public datasets. For rule algorithms only, i.e., RuleFit, Node harvest, and SIRUS,
minimum values are displayed in bold, as well as values within 10% of the minimum for
each dataset ("SIRUS sparse" put aside). [28]

2.2 Related Work

Currently there have been multiple papers and studies developed exploring different

black-box methods to predict the Emergency Departments (ED) waiting time and afflu-

ence in hospitals. We will see some of those studies in this chapter. We decided to divide

these studies in two different categories, those which tried to predict the waiting time

and those which tried predicting the affluence in the ED.

2.2.1 Predicting Affluence in Emergency Departments

We start by looking at some studies that tried to predict the number of people visiting

the ED, either daily or monthly, in different hospitals around the world. We think it is

important to look at these studies since the methods used to predict the number of people

visiting an ED may also be investigated to predict the time the patients have to wait.

Yan Sun et al. [29] performed a study trying to predict the daily attendance at an

emergency department to aid resource planning. They used time series models to predict

daily attendance at the emergency department of a hospital in Singapore. The patients

were divided into 3 categories, P1, P2, and P3 according to the patient acuity category

scale, where P1 is the most severe category. They also included other data for the study

like the public holidays, and weather factors (temperature, air quality, and relative hu-

midity). The results showed that P1 did not have any weekly or yearly periodicity and the

only relevant feature was the air quality. For P2 and for the model with all the data, this

is, P1, P2 and P3 combined, they found a weekly periodicity and a correlation with the

public holidays. Lastly, they found that the P3 attendances were significantly correlated

with the air quality, the public holidays, the day of the month of the year, and the day of

the week. Concerning the performance of the Autoregressive Integrated Moving Average

(ARIMA) models, the best model was the one regarding all the acuity levels combined,
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which achieved a Mean Absolute Percentage Error (MAPE) of 4.8%. On the other hand,

the worst model was the one forecasting the P1 attendance, which had a MAPE of 16.8%.

The P2 and P3 models had a MAPE of 6.7% and 8.6% respectively. This study showed

that the daily attendance at the emergency department of this hospital was not predicted

by weather conditions. Although this may be because Singapore is a tropical city, with

hot and humid weather that does not have big variations throughout the year.

A study made in a medical centre in Southern Taiwan, made by Juang et al. [30],

analysed the time series ARIMA to forecast the monthly visits of the following year. The

statistical tests showed that six ARIMA models were candidate models to be the best,

but the model ARIMA (0,0,1) had the minimum Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC). This model resulted in a MAPE of 8.91%.

Nevertheless, the authors stated that there were some possible influencing factors not

incorporated, like epidemiological information, atmosphere changes and political issues,

which could be medical policy, resource allocation or healthcare funding strategies.

With the goal of exploring and evaluating the use of multiple statistical forecasting

methods when predicting the daily affluence on the ED, Jones et al. [31], compared the

accuracy of multiple statistical forecasting methods with the accuracy of a previously

proposed forecasting method at three different hospitals ED from the United States. The

different methods evaluated were the Seasonal Autoregressive Integrated Moving Aver-

age (SARIMA), time series regression, exponential smoothing, and an artificial neural

network models. The results revealed that all the models implemented had improved,

even if slightly, the baseline model performance. The best method in the first facility was

the SARIMA model, with a MAPE value of 13.89%, which represented an improvement of

0.51% compared to the baseline (14.40%). For the second and third facilities, the best per-

formance was achieved by the time series regression model including climatic variables,

with MAPE values of 8.91% and 8.52% respectively. These represented an improvement

of 0.50% in the second facility and 0.61% in the third facility when compared to the

baseline values which were 9.41% and 9.13% respectively. Furthermore, it was possible

to conclude that introducing climatic variables in the time series regression model im-

proved its performance on all three facilities when compared to the time series regression

model without the climatic variables, thus, showing a correlation between them and the

emergency department affluence.

On [32] Jin et al. evaluated three different time series models to predict the daily

affluence in the Emergency Department (ED) of a Korean hospital. The first model was

the ARIMA, the second and third models were two different SARIMA models, where one

of them was univariate and the other multivariate. To evaluate how good the models fit,

they used the AIC and BIC, which we will see in Section 4.2.1, while the forecast accuracy

was measured using MAPE. The results showed that the best accuracy was achieved by

the multivariate SARIMA, with the lowest MAPE (≈ 7.4%). Moreover, they concluded

that from the multiple variables in the multivariate SARIMA model, the most relevant

were Chuseok, the average temperature, precipitation and season, and only those could
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be selected as explanatory for this model. On the other hand, the worst model was the

ARIMA model with a MAPE of 11.2%, while the univariate SARIMA model had a MAPE

of ≈ 8.5%.

The last study we analyzed regarding affluence in the emergency department was

made by Carvalho et al. [33]. They study the assessment of forecasting models to predict

the patients arrival at the emergency department of a hospital in Portugal, the Braga

Hospital. The models used in this study were different models of the ARIMA, built

with data regarding the emergency department arrivals from 2012 to 2013 and tested in

data from 2014. The results showed that the best ARIMA models to predict the patients

arriving at the emergency department were the ARIMA (1,1,1) and the ARIMA (1,0,1)

with a MAPE (mean absolute percentage error) of 5.92% followed by ARIMA (0,0,1) and

ARIMA (1,0,0) with a MAPE of 8.28%. All these ARIMA models were able to outperform

both the moving average and the exponential smoothing, which achieved a MAPE of

9.82% and 10.23% respectively.

2.2.2 Predicting Waiting Time in Emergency Departments

Predicting the waiting time in ED is one of the focus of this thesis, and thus, we decided

to look at what have been made so far and what were the results obtained when trying to

make this prediction.

One of these studies was made by Yong-Hong Kuo et al. in [34] where they present

multiple machine learning models to predict the real-time and personalized waiting

time in an emergency department. They found that machine learning models were more

effective than linear regression models to predict the waiting time. Moreover, they say that

the knowledge of the emergency department system may improve the performance of the

prediction model. The authors believe that introducing this concept of systems thinking,

this is, the usage of knowledge and principles of how the system works, can enhance the

performance of the algorithm. The models tested in this study were the Linear Regression

model, used as baseline model, feedforward artificial neural networks, Support Vector

Machines (SVM) and Gradient Boosting Machines (GBM). They tested these models on a

dataset collected from the Emergency Department of the Prince of Wales Hospital in Hong

Kong. The results showed that the three machine learning models (SVM, GBM and ANN)

were not significantly better than the baseline model (linear regression) when using the

dataset without the system knowledge. However, when they included the new features

that represent the system knowledge, the machine learning models performance had a

significantly improvement. While the linear regression model reduced its Mean Squared

Error (MSE) about fifteen percent, the three machine learning models achieved around

twenty percent less MSE than the the linear regression model with these new features.

The Gradient Boosting model had the least MSE (around 4.383) with these new features,

which was around 5.598 before introducing the system knowledge, thus, representing an

improvement of almost 50% percent with the new features. These results clearly show
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us that introducing system knowledge in the machine learning models clearly improved

the models performance, and thus, showing us the importance to do an interdisciplinary

research, joining data scientists that develop algorithms with domain experts of the field

that can share their knowledge and provide feedback. Although machine learning models

were able to perform better in the predictions, we must not forget that these are "black-

box" models, and thus, do not provide an explanation on why a prediction was made,

which is a critical problem in the healthcare environment.

Sun et al. [35] tried to use quantile regression to predict the waiting time in real-

time in the emergency department of a hospital in Singapore. In the dataset of this

hospital, the patients were categorized into 3 different categories, acuity category 1,2,

and 3. Patients with acuity category 1 are the most critical and have the highest priority,

followed by category 2 and then 3. It is important to note that the patients of category 3

are cared for by a different team of physicians, which may affect the waiting time. They

obtained a median absolute prediction error of 11.9 minutes for the acuity category 2

and 15.7 minutes for the acuity category 3. These were good results for the authors

that showed that using scant clinical information extracted from the existing emergency

department system resulted in obtaining good accuracies for the waiting time with the

quantile regression.

Another article, made by Pak et al. [36], studied the prediction of waiting time for

treatment of patients in the emergency department (ED) of a hospital in Australia. In

this study, they implemented five different algorithms: ordinary least squares, Ridge re-

gression, LASSO regression, quantile regression, and Random Forest. They compared the

prediction of these models with the rolling average and the median estimators, which

have limited accuracy. In order to implement the Machine Learning algorithms, they

used a large set of variables, including queueing and service flow variables, which they

wanted to prove that improve the prediction of the waiting time. They measured the

results using the Mean Squared Prediction Error (MSPE) and MAPE and observed that

all five estimators outperformed significantly the rolling average. In fact, the LASSO

regression, which obtained the best results, reduced the MSPE by 21%. Moreover, the

quantile regression reduced the number of patients with underpredicted waiting times

by 42%. With these results, they obtained clear evidence that these estimators have better

accuracy in predicting the waiting time in ED than the rolling average. Furthermore, they

also showed that using variables carefully constructed that represent a complex emer-

gency department environment, like the patient queue development, the service rates,

the characteristics of patients, and the diurnal fluctuations, is critical for the models to

produce better waiting time forecasts. Lastly, their results also showed that the predictive

accuracy improved when the emergency department operates at full capacity.

A Q-Lasso model, which combines statistical learning and fluid model estimators, was

proposed by Ang et al. in [37] to predict the waiting time in ED. They tested this model

in four hospitals and compared its accuracy with the rolling average accuracy. The results

showed that in all four hospitals, Q-Lasso had a better accuracy than the rolling average,

24



2.2. RELATED WORK

even though it still had a large error. It improved the rolling average accuracy by 33.3%

in the first hospital, 25.11% in the second hospital, by 12.0% in the third hospital and by

13.2% in the fourth hospital. The higher improvements in the first two hospitals, are due

the fact that these exhibit a higher variance in the waiting times. This higher variance,

gave the opportunity for Q-Lasso to explain the variation of the waiting time through

predictor variables that were able to capture conditions and events in the emergency

department (ED), which the rolling average does not. Moreover, they showed that Q-

Lasso is capable of tracing the diurnal fluctuation of the waiting time much better than

the rolling average.

A study conducted towards a real-time prediction of waiting times in ED [38] an-

alyzed different machine learning techniques. This study used data from two Italian

hospitals and evaluated the predictive ability of five different models: LASSO, Random

Forest, Support Vector Regression, Artificial Neural Networks, and the Ensemble Method,

which ensemble all the previous methods, assigning a weight to each one of them. They

also introduced queue-based variables that captured the current state of the emergency

department. To identify the technique that provided the best prediction and best real-

time estimations of the waiting times they used two forecasting error measures, the MSE

and the MAE. In this study, they also compared the different techniques in terms of

computational time. In terms of accuracy, the results showed that the Ensemble Method

outperformed all other techniques since it achieved the lowest for both metrics. For the

first dataset tested in this study, the Ensemble Method improved the accuracy of Ordi-

nary Least Square (OLS) between 23 and 28%, while for the second dataset it improved

between 14 and 17%. LASSO was the worst technique of the machine learning techniques

implemented since it only reduced the error from OLS up to 6% on the first dataset and

0.6% on the second dataset. The Random Forest and Support Vector Regression per-

formed very similarly in both datasets. Even though the Ensemble Method obtained the

best results in terms of accuracy, it was the technique that took the longest computational

time while LASSO was the fastest model running. Despite taking a longer time to run,

which was expected since it combines the other four techniques, these results show that

the Ensemble Method was the most accurate predictor of waiting times, significantly

outperforming all the others.
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3

Exploratory Data Analysis

In this chapter, we will be exploring and analyzing the data that will be used in this thesis.

The dataset used in this work has information from the Portuguese National Health

Service (Serviço Nacional de Saúde(SNS)) taken from their website. In this dataset, we

have information about the waiting time and number of people waiting in the Emergency

Department of 4 hospitals in Portugal: Santa Maria, São Francisco Xavier, Hospital Dona

Estefânia, and São José. These are the 4 main hospitals in Lisbon. The data we will be

analyzing corresponds to the time period from November 15, 2017, until September 24,

2019.

3.1 Overall Statistics

Each record in the dataset has information regarding the number of people waiting and

the average waiting time in the last 2 hours in each Emergency Stage level, which goes

from 1 to 5 and corresponds to the Manchester Triage color (where 1 corresponds to blue,

2 to green, 3 to yellow, 4 to orange and 5 to red). A sample from the dataset can be seen

in the figure 3.1, where we can see the fields of the record, this is, the variables that we

are going to use. We have 2 numerical and 6 categorical variables which are described in

the table 3.1 with their respective meaning.

Tables 3.2 and 3.3 show us some summary statistics on our data regarding each Emer-

gency Stage.

In the table 3.2 we can observe that the emergency stages 1, 2, and 3 have their average

value under the maximum value that the Portuguese national health service tries to keep

for the hospitals analyzed in this dataset (which is 240, 120 and 60 minutes respectively)

but the Emergency Stage 4 has it mean waiting time over that maximum value which is

10 minutes. The Emergency Stage 5 maximum value is 0 but we have 4 registries with

1 minute in the 291 registries that we have from this Emergency Stage. Even though we

have 4 registries with this value, they are all within the same 2 hours interval in the same
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Figure 3.1: Sample from the dataset.

Variable name in the record Description
Acquisition_Time Timestamp of the observation
Hospital Number of the hospital
Urgency_Type Type of urgency
Service Type of service
Emergency_Stage Level of emergency, which corresponds to the

Manchester Triage (1 is blue, 2 is green, 3 is yellow, 4
is orange, 5 is red)

Waiting_Time Average waiting time for the past two hours
People_Waiting Number of people waiting at the time
H_Name Name of the hospital

Table 3.1: Variables in each record of the dataset and their corresponding description.

hospital, so we can conclude that it only happened once in the time period studied and it

is uncommon that someone in this emergency stage needs to wait at all.

Emergency Stage 1 Emergency Stage 2 Emergency Stage 3 Emergency Stage 4 Emergency Stage 5
Mean 123.47 55.81 38.02 16.49 0.01
Standard
deviation

126.53 62.38 41.04 20.99 0.12

Minimum 0 0 0 0 0
Maximum 1046 716 910 518 1

Table 3.2: Statistics regarding the waiting time (in minutes) in each emergency stage.

Table 3.3 shows us that stages 2 and 3 have a higher mean number of people waiting

than stage 1. Despite that, from table 3.2 we can see that they have a lower waiting time.
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This is because they are more severe cases that can not wait as long and need priority over

stage 1 cases.

Emergency Stage 1 Emergency Stage 2 Emergency Stage 3 Emergency Stage 4 Emergency Stage 5
Mean 0.9 3.60 2.31 0.39 0.08
Standard
deviation

1.33 5.80 3.92 0.797 0.26

Minimum 0 0 0 0 0
Maximum 13 55 41 10 1

Table 3.3: Statistics regarding the number of people waiting in each emergency stage.

In Figure 3.2 we have the number of observations of each Emergency Stage in our

dataset. We can see that Emergency Stage 5 is so low (291) compared to the other emer-

gency stages that we can not even see its bar. We can also clearly see that most entries in

this dataset are from Emergencies Stages 2 and 3.
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Figure 3.2: Total number of entries per year in the different emergency levels.

The distributions of the continuous variables of our dataset, this is, the waiting time

and the number of people waiting, can be seen in Figures 3.3 and 3.4 respectively. These

plots seem to have approximately Power Law distributions, which means that there are

many observations with a low waiting time and a low number of people waiting and rare

observations with a high waiting time and number of people waiting.
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Figure 3.3: Distribution of the waiting
time in the dataset.
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Figure 3.4: Distribution of the number of
of people waiting.

In Figure 3.5 we can see the relation between the waiting time and the Emergency

Level. It is clear that the higher the Emergency Level, the lower the waiting times tend to

be, which is something expected since the higher the Emergency Level the more severe a

case is and can not wait as long. On the other hand, if we analyze the people waiting in

each of the Emergency Levels, in Figure 3.6, we can see that the same does not happen.

Emergency level 2 seems to be the one with more people waiting followed by Emergency

Level 3, but since they are more severe cases than Emergency Level 1 cases, they have pri-

ority and are taken care of first, thus, they do not have waiting times as long as Emergency

Level 1.
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Figure 3.5: Relation between the
waiting time and the Emergency Level.

1 2 3 4 5
Emergency Level

0

10

20

30

40

50

Nu
m

be
r o

f P
eo

pl
e 

W
ai

tin
g

Boxenplot for the Number of People Waiting in each Emergency Level

Figure 3.6: Relation between the number of
people waiting and the Emergency Level.

3.2 Seasonalities

Next, we are going to study how these waiting times and the number of people waiting

changed throughout the years and how they are related to the time of the year, month,

week, and day.
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We can see in Figure 3.7 that throughout the years the higher the emergency stage of

a patient, the less time the mean of the waiting time was. This relation makes sense since

the higher the emergency stage, the more urgent the case is and can not wait as long as

the other emergency stages. We can visualize the values from table 3.2 in this Figure (3.7).

Even though in the table they refer to the entire dataset, these values stayed almost the

same throughout these 3 years.

While the average waiting time in the different Emergency Stages seemed to be almost

constant throughout the years, the average number of people has not. In Figure 3.8 we can

see that Emergency Level 4 has been having on average slightly more people waiting each

year. We can also see that in 2018 more people were waiting on average on Emergency

Levels 1 and 5 than in 2017 and 2019. On the other hand, in 2018, fewer people were

waiting on average on Emergency Level 3.
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Figure 3.7: Average waiting time in
minutes throughout the years in each
Emergency Stage.
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Figure 3.8: Average number of people
waiting throughout the years in each
Emergency Stage.

In Figure 3.9 we can observe the monthly behavior of the average waiting time in the

different Emergency Levels. This value seems to be higher in the winter months (from

November to February) in the Emergency levels 1, 2, and 3, and also increases at the end of

the summer (August and September), but have their peak in the winter. Emergency level

5 has an average of 0 minutes waiting every month and never changes while Emergency

level 4 has a spike in June, unlike the other emergency levels which seem to have a lower

waiting time this month.

When studying the monthly number of people waiting in Figure 3.10 we can notice

that the months with more people waiting are the winter months for Emergency Levels

2,3 and 4. Emergency Level 1 seems to have a huge pike in June and stays high in the

summer contrary to every other Emergency Level. Emergency level 5 has a peak in August

but its value is low all over the year and even tho the number of people waiting might be
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higher than 0, the people in this Emergency level never have to wait any time, as seen in

Figure 3.9.
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Figure 3.9: Relation between the mean
waiting time with the months of the year.
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Figure 3.10: Relation between the mean
number of people waiting with the months
of the year.

In Figure 3.11 we can see the relation between the weekday and the waiting time

in each of the Emergency Levels. Tuesday is the day of the week with a higher average

waiting time for Emergency Levels 1,2 and 3. That value seems to slowly decrease during

the rest of the week until Sunday for Emergency Levels 2 and 3 while the Emergency

Level 1 waiting time decreases a lot on Friday but increases during the weekend. The

average waiting time for Emergency Levels 4 and 5 seems to be the same every day of the

week.

If we look at the relation between the weekday and the average number of people

waiting in Figure 3.12 we notice that this number is high at the beginning of the week

(Monday) and slowly goes down during the week for the Emergency Levels 1, 2 and 3.

The average number of people waiting for the Emergency Level 4 is the same every day of

the week. For Emergency Level 5, this number seems to be different from zero on Fridays

and Sundays, but even when people are waiting on this Emergency Level, they do not

have to wait any time as we can see in Figure 3.11.

In Figure 3.13 we can see the relation between the average waiting time and the day of

the month. In that figure, we can observe that there seem to be some days where people

have to wait more on Emergency Level 1. Most of these days seem to be at the beginning

and end of the month, but also on day 12. When analyzing the line of Emergency Level 2

we see that it also slightly increases in the last days of the month. For Emergency levels

3,4 and 5 the waiting time seems to be almost the same every day of the month.

When analyzing the relation between the average number of people waiting and the

day of the month in Figure 3.14 we notice again that in the beginning and right before the
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Figure 3.11: Relation between the mean
waiting time with the day of the week.
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Figure 3.12: Relation between the mean
number of people waiting with the day of the
week.
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Figure 3.13: Relation between the average waiting time with the day of the month.

end of the month we have more people waiting in the Emergency Levels 2 and 3. On the

last days of the month (30 and 31), we have a decrease in the average of people waiting in

all Emergency Levels except Emergency Level 5. The mean of Emergency level 5 on day

14 of the month can not be completely trusted since we only have 1 entry on the dataset

for the 14th day of a month with Emergency Level 5 in the 18 months of data. That means

since that single entry has the value of 1 on the number of people waiting, the average of

that day will also be 1.

Regarding the daily values, we can see in Figure 3.15 that the average waiting time
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Figure 3.14: Relation between the average number of people waiting with the day of the
month.

in Emergency Levels 1,2,3, and 4 move together and have their peak at around 3-4h and

their lowest value around 11h. The average waiting time in the Emergency Level 5 seems

to be 0 during the whole day. The daily behavior of the average number of people waiting

in each of the Emergency Levels seems to be very different from the average waiting

time. While the average waiting time seems to be higher in the early hours of the day, at

these hours the number of people waiting seems to be the lowest of the day, having its

minimum at around 6h, as can be seen in figure 3.16. The maximum of these values for

Emergency levels 1,2,3 and 4 seem to be around 14h to 20h while for Emergency Level 5

it looks at around 13h to 14h.
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Figure 3.15: Daily behavior of the waiting
time in each Emergency Level.
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Figure 3.16: Daily behavior of the number
of people waiting in each Emergency
Level.

In Figures 3.17 and 3.18 we analyze the hospitals individually. We can observe that
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both the waiting time and the number of people waiting seem to change together in every

hospital according to the hour of the day. Regarding the Waiting Time they all seem to

have their highest value at night and during the early hours of the day except for the

children’s hospital "Estefania " which also has one of its highest waiting time values in the

afternoon after 14h. Analyzing the number of people waiting we can see that they all have

their lowest during the early hours of the day and start having their highest values after

10, reaching their peak around lunch hour (13h) and in the hospital "S Jose" at dinner

time (around 20h).
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Figure 3.17: Daily behavior of the waiting
time in each Hospital.
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Figure 3.18: Daily behavior of the number
of people waiting in each Hospital
Level.

3.3 Hospital Analysis

When we analyzed the Hospitals individually, in figure 3.19, we noticed that of the 4 hos-

pitals in the dataset, the hospital "Santa Maria" has the highest mean waiting time (69.60

minutes), followed by "São Francisco de Xavier" (42.36 minutes) and "São José" (42.29

minutes). On top of that, the hospital "São José" seems to have the longest maximum

waiting time (1046 minutes) and the greatest amount of outliers.

Concerning the number of people waiting in each of the hospitals, in Figure 3.20, we

can see that the hospital "Santa Maria" has both the highest mean (4.15) and maximum

(55) of people waiting. On the other hand, the hospital "São Francisco de Xavier" has the

lowest mean (1.27). While the hospital "Estefânia" has the second highest mean of people

waiting (3.19), as we saw in Figure 3.19, it has the lowest mean waiting time (31.12) by

over 10 minutes. These values could indicate that this hospital makes the most efficient

management of the patients, as it is the second hospital with more people waiting and at

the same time, the hospital with the minimum waiting time.

To deepen our analysis of the waiting time in each of the hospitals, we studied how

the waiting time changed according to the type of service in every hospital. In Figure 3.21

we can clearly see that the hospital "Santa Maria" has always the highest average waiting
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Figure 3.19: Relation between the waiting time and the Hospital.
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Figure 3.20: Relation between the number of people waiting and the Hospital.

time both in "Cirurgia" and "Medicina". On the other hand, the hospital "Estefania" has

the lowest average waiting time in both of these services. Moreover, we notice that the

hospitals that have the lowest and highest average waiting time in one type of service,

also have it on the other. Despite that fact, the hospital "São José" has almost the same

waiting time in the service "Cirurgia" as "Estefania", which is the lowest of the 4 hospitals

and has the second highest average waiting time in "Medicina". This shows us that the

waiting time in these two services is not necessarily correlated.
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Figure 3.21: Relation between the waiting time and the service in each Hospital.

The same study was made for the average number of people waiting. As can be seen

in Figure 3.22, the hospital "Santa Maria" is not only the hospital with the highest average

waiting time in both services but also the highest average number of people waiting in

both of them, followed by "Estefania". The hospital "Estefania"surprised us here in a

positive way, because even tho this hospital has the second highest average number of

people waiting in both services, it has the lowest average waiting time as we saw in figure

3.21. On the other hand, the hospital "Sao Francisco Xavier (SFX)" even though it has

the lowest average number of people waiting in both services, it has the second highest

average waiting time in "Cirurgia" and the third highest in "Medicina", which indicates

that they might have more complex situations to manage there.
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Figure 3.22: Relation between the number of people waiting and the service in each
Hospital.
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4

Methodology

4.1 Dataset Pre-Processing

In Chapter 3 we analyzed the whole dataset used in this thesis, however, we only use

part of it, specifically the rows regarding the hospital "Santa Maria". From the 395.858

rows about the Santa Maria hospital, we removed 158 where the Service was not either

"Cirurgia" or "Medicina" and did not make sense in our data. This left us with data

describing the waiting times of the hospital "Santa Maria" from November 15, 2017, until

April 29, 2019.

We did not have to remove outliers since those which were very high, like 1046 min-

utes, observed in chapter 3, were not found in the data regarding this hospital ("Santa

Maria"). Nevertheless, we had some very high values, like 599 minutes, but those are data

points that we must take into consideration since they can happen again. A sample from

the dataset after extracting only the data regarding the hospital "Santa Maria" can be seen

in Figure 4.1.

Figure 4.1: Sample from the dataset regarding only the hospital "Santa Maria".

This dataset has information about the different emergency stages in the emergency

department updated every 10 minutes, with a granularity that goes down to the seconds.
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Predicting the waiting time down to the second would not allow us to get accurate pre-

dictions, so, it was opted to group the data by day, as done in previous studies (seen in

Chapter 2.2).

Since we had the information regarding the different emergency stages, besides group-

ing the data by day, we decided to split it according to the emergency stage, to get a better

and more specific prediction. Even though the original dataset had 5 different emergency

stages, as there are 5 different emergency stages in the Manchester Triage, we only in-

cluded stages 1,2,3, and 4, since emergency stage 5 did not contain enough observations

to allow for a satisfactory and reliable prediction. This resulted in the creation of 4 differ-

ent datasets, 1 for each emergency stage, describing the waiting times of 531 days (from

November 15, 2017, until April 29, 2019).

Having the different types of service in each emergency stage made us wonder if that

information would allow our models to have even better accuracy, so, besides the above

datasets created, we created another 4 datasets (1 for each emergency stage from 1 to

4) that also had the data grouped by day, but with the difference that for each day now

we had 2 rows, one regarding the service "Cirurgia" and another regarding the service

"Medicina". These datasets, with the information about the service in each emergency

stage, were only used to compare the interpretable models since the time series models

did not allow for multiple observations in each time step.

Moreover, we derived some attributes from the "Acquisition_Time" column and added

some columns to the dataset. These columns were the weekday, the day of the month, the

month of the year, and the season (Autumn, Winter, Spring, and Summer). Furthermore,

the missing entries in all the datasets were imputed with the mean value of the respective

column. This was necessary since there are models that do not accept empty rows and

need information regarding every day (this is, they can not have missing days in a time

interval). Since we wanted to have the same data for all models, we used this dataset even

in the models that could handle missing entries. The non-numerical variables, like the

values from the "Season" column, were coded into numerical variables (for example, the

values from the season column were coded into 1,2,3 and 4) on the models that could not

process non-numerical variables.

The mean, standard deviation, minimum and maximum for each emergency stage in

the first 4 datasets can be seen in table 4.1, while the mean, standard deviation, mini-

mum and maximum for each emergency stage of the second group of datasets, where the

services were kept apart, can be seen in table 4.2.

Emergency Stage 1 Emergency Stage 2 Emergency Stage 3 Emergency Stage 4
Mean 126.41 81.26 62.75 25.90
Standard
deviation

52.71 26.90 20.28 10.61

Minimum 38.22 33.59 22.72 8.91
Maximum 357.39 203.73 181.84 76.14

Table 4.1: Statistics regarding the first group of datasets.
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Emergency Stage 1 Emergency Stage 2 Emergency Stage 3 Emergency Stage 4
Mean 126.41 81.26 62.75 25.90
Standard
deviation

76.29 39.65 29.48 18.66

Minimum 9.56 21.56 14.0 1.0
Maximum 506 279.83 241.35 134.67

Table 4.2: Statistics regarding the second group of datasets.

Lastly, note that all the models implemented in the following sections will try to

predict the Emergency Department waiting time and will be compared using the mean

absolute error (MAE). Moreover, since the variation of the waiting time values is higher

in the second group of datasets (as can be seen in 4.1 and 4.2), we expect to have greater

MAE values in the predictions made in this group of datasets than in the first group of

datasets where the services were grouped and the variation is lower.

4.2 Baseline Non Interpretable models

As stated in [39], finding an accurate and simple model is almost always harder than

finding an accurate but complex model. In their work, they define the Rashomon set,

which is the set of almost equally accurate models, and if that set is large, it contains

many accurate models where one of which may be the simple model we are looking for.

To define the Rashomon set for future interpretable models, first, we implemented state-

of-the-art non-interpretable models, which allow us to define a baseline accuracy, that

our interpretable alternatives will try to match. The chosen models to have a baseline

accuracy for our set were: ARIMA, SARIMA, Prophet, two Recurrent Neural Network

(RNN) models (Long Short-Term Memory (LSTM) and GRU), and Transformer.

All the non interpretable models were implemented using the Python package "darts".

4.2.1 ARIMA

The first non-interpretable model we decided to implement was the Autoregressive In-

tegrated Moving Average (ARIMA). This model can be described as a linear regression

model that makes its predictions based only on the past values of the target variable. This

model can be divided into 3 components, the Autoregressive (AR), the Integrated (I), and

the Moving Average (MA) component [40].

The first component of this model, the Autoregressive, predicts the target value based

on its own previous values, this is, it uses lagged values of the target as the X variables.

This component can be seen in the equation (4.1), where Y is the prediction and is simply

a linear function of its past (lagged) n values (n being the number of values we want to

consider, a parameter we choose). Each of its past values is multiplied by a regression

beta (B0, B1,B2,Bn) that we fit when training the model.

Yforward 1 = B0 +B1Y +B2Y _lag1 +B3Y _lag2 + ...+BnY _lagn−1 (4.1)
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The second component of the ARIMA is the Integrated component, which replaces

the data values with the difference between the data values and the previous values. This

can be seen in the equation (4.2), which is the same as the equation (4.1), but instead of

having the value Y, we have the difference between Y, and the previous value, Y _lag1. The

Integrated component is also controlled by a parameter we can choose by deciding the

order of differentiation, i.e., the number of times the data have had past values subtracted.

Yforward 1−Y = B0 +B1(Y −Y _lag1) +B2(Y _lag1−Y _lag2) + ...Bn(Y _lagn−1−Y _lagn) (4.2)

The third and last component of this model is the Moving Average (MA) which can

be described with the equation (4.3). The only difference from this equation to the AR

equation ((4.1)) is that instead of using the past values we are using the error (E) of the

past values. Just like in the AR equation, we decide how many values (n) we want to

consider and can choose that parameter.

Y = B0 +B1E_lag1 +B2E_lag2 + ...+BnE_lagn (4.3)

To find the best value for each of the parameters, this is, the best value for the param-

eter of the Autoregressive component (p), the parameter of the Integrated component (d)

and the parameter of the Moving Average component (q) and consequently find the best

model, we investigated the Akaike Information Criterion (AIC) [41] and the Bayesian

Information Criterion (BIC) values to compare the different models.

The AIC is an estimator of prediction error founded on information theory. This

criterion estimates the relative quality of statistical models based on the relative amount

of information that a given model loses to represent the process that generated the data.

Consequently, the higher the AIC value, the higher the amount of information the model

loses, thus meaning, that the best model will be the one with the lowest AIC value since

it is the model with the lowest loss of information. Moreover, since AIC deals with the

trade-off between how well the model fits and its simplicity, it is expected that the models

with lower AIC scores will balance better the ability to fit the data set while preventing

over-fitting. The Akaike Information Criterion (AIC) can be defined by the equation (4.4),

where k is the number of parameters of the model and L̂ is the maximum value of the

likelihood function for the model.

AIC = −2log(L̂) + 2k (4.4)

BIC is another criterion we can use to find the best model. Just like the Akaike

Information Criterion, the lower the BIC value, the better the model, as it is also based

on the likelihood function and also penalizes models with more parameters like AIC.

The main and only difference between BIC and AIC is that the second term, the penalty

term, in BIC depends on the sample size [42] and will consequently be larger. BIC can
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be defined by Equation 4.5, where k is the number of parameters of the model, n is the

number of data points and L̂ is the maximized value of the likelihood function.

BIC = −2log(L̂) + k log(n) (4.5)

After carrying out a grid search and comparing the AIC and BIC values of the different

models, we chose the model with the lowest AIC value for each of the datasets. The

parameters for the best model for each of the datasets can be seen in Table 4.3. The

results show us that the four datasets share the same best parameter on the Integrated

component, 1, but the parameter for the Moving Average is different in all of them.

Emergency Level 1 2 3 4
(p,d,q) (1,1,2) (4,1,7) (1,1,9) (1,1,3)

Table 4.3: Parameters for the best ARIMA model for each dataset.

4.2.2 SARIMA

SARIMA stands for Seasonal-ARIMA (Seasonal Autoregressive Integrated Moving Aver-

age). This model is an extension of the ARIMA and is formed by adding seasonal terms

to the ARIMA models [43]. These terms are the (P, D, Q)s, where P and Q are similar to p

and q in the ARIMA model, but now refer to the seasonal orders, this is, P stands for the

seasonal autoregressive order and Q stands for seasonal moving average order. Regarding

D, it represents the seasonal difference order. Lastly, s represents the length of the season.

Combining these new seasonal terms with the terms of the ARIMA, the SARIMA

model is defined as (p, d, q)(P, D, Q)s.

Similarly to what we did to find the best ARIMA model, we performed a grid search

where we compared the AIC and BIC values of different models, where we changed the

p, d, q, P, D, Q, and s values, and chose the one with the lowest AIC value for each of the

datasets. The results can be seen in the table 4.4 and show us that all the SARIMA models

share one parameter, the length of the season, with a value of 4.

Emergency Level 1 2 3 4
(p,d,q)(P,D,Q)s (1,1,2)(0,1,1)4 (1,1,1)(1,1,2)4 (3,0,3)(0,1,2)4 (1,0,2)(0,1,1)4

Table 4.4: Parameters for the best SARIMA model for each dataset.

4.2.3 Prophet

Prophet [44] is an open-source software available both in Python and R to generate time

series models. It was designed to have intuitive parameters that can be fine-tuned without

knowing about the details of the underlying model. Prophet overcomes some drawbacks

of ARIMA, such as the need of having regularly spaced measurements and the need of
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inserting missing values in the data. Moreover, ARIMA fails to capture any seasonality

and if there is a trend change near the cutoff period its forecasts are susceptible to large

trend errors. Prophet can be described as the sum of three main components, the trend

function, g(t), which models the non-periodic changes in the value of time series, and the

seasonality function, s(t), which represent cyclic changes and the holidays’ function, h(t),

that represent the effects of holidays which occur on potentially irregular schedules, plus

an error term, ϵt, that represent idiosyncratic changes. This formula can be seen in the

equation 4.6.

y(t) = g(t) + s(t) + h(t) + ϵt (4.6)

Prophet has two different models implemented to capture the overall trend of the data,

a saturation growth model, and a piece-wise linear model. The first one, the saturation

growth model, is derived from the logistic growth equation where the carrying capacity

is replaced by a function of time, and the growth rate and offset change their values at

each changepoint. This model should be used when there is a limit in the time series and

can be seen in the equation 4.7, where k is the base rate, δ is a vector of rate adjustments,

where δj is the change in rate that occurs at time sj , m is the offset, γ is a vector of rate

adjustments for the offset, where γj is the change that occurs at time sj and a(t) is a vector

that can be represented as

aj(t) =

 1, if t > sj ,

0, otherwise

g(t) =
C(t)

1 + exp(−(k + a(t)T δ)(t − (m+ a(t)T γ))
(4.7)

The second growth model implemented in Prophet is the piece-wise linear model and

is used when there is no saturation growth. This trend equation can be seen in 4.8.

g(t) = (k + a(t)T δ)t + (m+ a(t)T γ) (4.8)

The changepoints sj mentioned above are moments of time where there is a change

that impacts the behavior of the data. These moments can either be manually defined or

automatically specified given a set of candidates.

Prophets seasonality function is a Fourier Series as a function of time, thus, it is a

sum of successive sines and cosines that can approximate the seasonal (cyclic) values

of the data. This seasonality can either be additive or multiplicative. In case of the

additive seasonality, the effect of seasonality is added to the trend while in the case of

multiplicative seasonality it is multiplied, which may make it either grow or decrease.

The last component of Prophet is the holidays’ function which allows us to provide

a list of dates that may affect the predictions so it can adjust the forecast. Prophet will

then use these dates to add or subtract value from the forecast from both the growth and

seasonality functions based on the past influence of these dates on the values.
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Finding the best parameters to get the best Prophet model was easier than finding the

best ARIMA model. The first thing that we chose was to use the linear growth function

since we do not have a limit for the time a person can wait in the emergency department

of a hospital. To choose which seasonalities we should use, we tried different models us-

ing different combinations of the daily, weekly, and monthly seasonalities and compared

the different results. The best results were achieved using the daily and weekly season-

alities. While trying the different seasonalities we also tried using both the additive and

multiplicative seasonality. Once again, we chose the one that achieved the best results

which was the additive seasonality. Lastly, we inserted the Portuguese holidays which

improved the results of the model.

4.2.4 RNNs

Recurrent Neural Networks (RNNs) [45] are an important part of neural networks re-

search, which have become more popular due to their potential to solve problems that

involve time sequences of events or ordered data like words in a sentence. These net-

works can use their connections to store a representation of the recent input events in

form of activations, which can be described as having a "memory", more specifically a

short-term memory since it only stores the representation of recent events. Recurrent

Neural Networks view the input as a sequence of events and when making a prediction,

they consider the information from past entries. The input of the network can be seen as

a sequence of vectors where each layer of the network will receive part of this input. Be-

sides the part of the input that each layer gets, it also receives some information from the

previous layer. This information from the previous layer encodes aspects of the sequence

received so far, which can be very useful for problems like time series analysis or natural

language processing.

Recurrent Neural Networks have the problem of having a short memory, this is, they

have trouble relating events that are too spread apart in time. Current algorithms like

Back-Propagation Through Time (BPTT) or Real-Time Recurrent Learning (RTRL), either

take too long to compute the activations over long time lags or simply do not work at all.

This happens because of the way error signals flow backward in time, they either blow

up, which leads to oscillating weights, or vanish, which makes the network take too long

to learn long time lags.

4.2.4.1 LSTM

To overcome the short-memory problem and not lose relevant information from events

further away in the past while keeping the short time lag capabilities, Sepp Hochreiter

and Jürgen Schmidhuber [46] proposed a novel recurrent network architecture, the "Long

Short-Term Memory" (LSTM). This network introduced two additional features to the

RNN architecture, an input gate unit and an output gate unit. Current Long Short-Term

Memory networks also have a third gate, the "forget gate" [47], which prevents the blowing
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or vanishing error problem. When Sepp Hochreiter and Jürgen Schmidhuber introduced

the LSTM, instead of this third gate, they introduced the Constant Error Carousel (CEC)

concept. It was the central feature of LSTM, which as we will see further is the same

as having the forget gate with the value 1.0. The CEC is obtained when the activation

function used is the identity function and the recurrent connection has a constant weight

of 1.

Initially, Sepp Hochreiter and Jürgen Schmidhuber tried using only the CEC before

adding any other feature to the RNN, but it did not work well except in simple problems

that involved local input/output representations and non-repeating input patterns. To

solve this problem, Sepp Hochreiter and Jürgen Schmidhuber [46] extended the CEC

and added additional features to allow constant error flow even through special and self-

connected units without the problems of the naive approach. The first feature introduced

was a multiplicative input gate unit that protects the memory content stored in a specific

unit, j from perturbations made by irrelevant inputs. In the same way, they introduced

a multiplicative output gate that protected other units from perturbations of memory

contents that are currently irrelevant but are stored in j.

The result of these additions is a more complex unit called memory cell. The j-th

memory cell is defined as cj . The center of each memory cell around which the cell is

built is a linear central unit with a fixed self-connection, the CEC. Along with the input

that the memory cell already received, netcj , now it also gets input from a multiplicative

output gate, outj , the "output gate", and from a multiplicative input gate, inj , the "input

gate". If we denote the activation at time t of the input gate as yinj (t) and the activation

at time t of the output gate as youtj (t) we have:

youtj = foutj (netoutj (t)) (4.9)

and

yinj = finj (netinj (t)). (4.10)

where

netoutj (t) =
∑
u

woutju
yu(t − 1) (4.11)

and

netinj (t) =
∑
u

winju
yu(t − 1). (4.12)

The indices u present in the summations can stand for different types of inputs like

input units, gate units, memory cells, or conventional hidden units. All these input units

might communicate useful information regarding the current state of the network. For

example, the input gate may use the inputs from other memory cells to determine where

or not they should store (access) certain information in the memory cell.
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These gate units allow the memory cell cj to avoid input and output weight conflicts.

To avoid the input weight conflicts, inj controls the error flow from the input connections,

wcj i , thus, it can decide when to keep or ignore information in memory cell cj and to

circumvent output weight conflicts, outj controls the error flow from unit j’s output

connections, by deciding when to prevent other units from being perturbed by cj . This

architecture of the memory cell created by Sepp Hochreiter and Jürgen Schmidhuber [46]

can be seen in Figure 4.2.

Figure 4.2: Architecture of memory cell cj (the box) and its gate units inj , outj . The
self-recurrent connection (with a weight of 1.0) indicates feedback with a delay of one
time step. It builds the basis of the "constant error carousel" (CEC). The gate units open
and close access to CEC [46].

The memory cell cj allows the information to flow through the sequence chain, so it

can be seen as the memory of the network. Since it can carry relevant information from

the beginning of the sequence throughout the processing of the sequence, it can reduce

the effects of the short-term memory that affect Recurrent Neural Networks. Nevertheless,

we must be aware that the cell may receive irrelevant information that it should remove,

and this is where the gates step in, they regulate which information is kept or removed

throughout the sequence. The gates are neural networks that decide which information

is allowed to get in and out of the memory cell, thus, during training, they learn what

information is relevant to retain in the memory cell and what information is not relevant

and thus should be removed. Every gate contains a sigmoid activation, which squishes

the values between 0 and 1. This helps to update or forget data because if the value is

0, any number multiplied by 0 will be 0 and thus will disappear (be forgotten). On the

other hand, any number multiplied by 1 will remain the same value as before, thus, the

value will be kept in memory.

To update the memory cell state, the input gate receives the previous hidden state

and the current input of the sequence and passes them into the sigmoid function. This

will decide if the values are important or not and thus, if they will be updated or not, by
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squishing the values between 0 and 1, where 0 means it is not important and 1 means

it is important. The hidden state and the current input are also fed into a tanh function,

which ensures that the values will stay between -1 and 1, thus, regulating the network by

avoiding some values to explode and becoming so high that others would seem insignif-

icant. The result from the tanh function will then be multiplied by the sigmoid output

that decides which information is important to keep. The result of this multiplication

will be added to the result of the forget gate [48], which was introduced by Gers et al. [47].

This new architecture can be seen in Figure 4.3.

Figure 4.3: Memory block with only one cell for the extended LSTM. A multiplicative
forget gate can reset the cells inner state sc [47].

The forget gate, which Gers et al. [47] introduced, decides what information is kept

and what information is removed. The standard LSTM tended to grow linearly during

the presentation of a time series, the nonlinear characteristics of the sequence processing

were made only by the squashing functions and the input and output gates. The forget

gates solve this problem by resetting the memory blocks when the contents are out of date

and hence useless. These resets do not mean to immediately reset to zero, but instead,

gradually resetting, corresponding to slowly fading cell states. To make this happen,

the forget gate receives the previous hidden state of the current input and passes them

through the sigmoid function. Just like in the input gate, the values will be comprised

between 0 and 1 where the closer to 0 the more it will forget, and the closer to 1 the more

information it will keep. If we designate the activation at time t of the forget gate as yϕj (t),

similarly to the input and output gates activations, we have
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yϕj = fϕj
(netϕj

(t)), (4.13)

where

netϕj
(t) =

∑
u

wϕju
yu(t − 1). (4.14)

Lastly, there is the output gate which will decide what should be the next hidden state.

This gate starts by receiving the previous hidden state and the current input and passes

them into a sigmoid. After that, the updated memory cell (which was already updated

by combining the outputs from the input and forget gates) is passed to a tanh function.

The result values from the sigmoid and tanh functions are multiplied to decide the final

hidden state output, this is, what information it should carry. The new memory cell state

and new hidden state are then carried over to the next time step.

The main limitations of LSTM consist of the fact that it requires additional units, the

gates, in each memory cell (compared to standard recurrent networks) and they are prone

to overfitting. On the other hand, the main advantages of LSTM consist in the error

backpropagation, which allows them to bridge very distant time lags. Moreover, they

have a good ability to handle noise and work well over a large range of parameters, such

as learning rate, input gate bias, and output gate bias.

To find the best LSTM model for each of the datasets, we did a grid search for each one

of them where we experimented with different parameters, trying different values for the

learning rate, the size of features maps in the hidden state, dropout value (the fraction of

neurons that are dropped in all except the last layer) and different loss functions.

4.2.4.2 GRU

The Gated Recurrent Unit (GRU) was a new architecture proposed by [49] to make the

recurrent units able to adaptively capture dependencies of different time scales.

Just like the LSTM, the GRU also has gating units that regulate the flow of information

inside the unit. The main difference between LSTM and GRU is that in this new architec-

ture a single gating unit controls both the forgetting factor and the decision to update the

state unit [50], thus, having only two gates, a reset gate, and an update gate. Moreover,

the GRU uses the hidden state to transfer the information inside the unit without using a

separate memory cell [51].

The activation h
j
t at time t of the GRU is a linear interpolation between the previous

activation h
j
t−1 and the candidate activation h̃

j
t :

h
j
t = (1− zjt )h

j
t−1 + z

j
t h̃

j
t (4.15)

where z
j
t , the update gate, decides how much the unit updates its activation and is com-

puted by:
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z
j
t = σ (Wzxt +Uzht−1)j , (4.16)

where xt is the current input, Wz is the network unit weight, ht−1 holds the information

of the previous t − 1 units and Uz is its own weight. This update gate acts similar to the

forget and input gates in the LSTM and determines how much information from the past

should be kept and what new information to add.

The candidate activation h̃
j
t is computed by:

h̃
j
t = tanh(Wxt +U (rt ⊙ ht−1))j , (4.17)

where ⊙ represents an element-wise multiplication and rt the reset gate, which will decide

how much of the previous information to forget. If rjt is close to 0, the reset gate will make

the unit behave like it is reading the first input of an input sequence, making it ignore

the previously computed state.

The reset gate r
j
t is calculated using a formula similar to the one used for the update

gate:

r
j
t = σ (Wrxt +Urht−1)j (4.18)

A single Gated Recurrent Unit is illustrated in Figure 4.4.

Figure 4.4: A diagram of a GRU block. The reset gate rt controls whether ignoring the
previous hidden state ht−1 or not. The update gate zt decides whether the hidden state ht
is to be updated with a new hidden state h̃t [52].

To find the best GRU model for each of the datasets, we did a grid search just like we

did for LSTM, where we tried different parameters in each of the models. The different
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parameters tested here were similar to the ones tested in the LSTM, this is, we tested

different learning rates, the number of recurrent layers, the number of features in the

hidden state, the dropout value, and the loss function.

4.2.5 Transformer

The Transformer is a neural network model that uses an attention mechanism to identify

global dependencies between input and output, thus, avoiding recurrence [53]. Attention

can be described as a function that maps a query and a set of key-value pairs to an

output, where the query, values, keys, and output are all vectors. The output results

from a weighted sum of the values, where the weight given to each value is the result of

a compatibility function of the query with the corresponding key. Moreover, this model

uses an architecture where an encoder maps a sequence of symbol representations (input)

to a sequence of continuous representations. Later, a decoder generates an output of one

element at a time that result in a sequence of symbols. At every step, the model consumes

the previously generated symbol as additional input to generate the next one.

This architecture uses stacked self-attention and point-wise, fully connected layers,

both for the encoder and the decoder. The model architecture can be seen in the figure

4.5, where on the left we have the encoder and on the right the decoder.

Figure 4.5: Architecture of the Transformer model [53].
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The encoder is simply a stack of multiple identical layers. Each layer has two sub-

layers, where the first is a multi-head self-attention mechanism, while the second is

simply a position-wise fully connected feed-forward network. Around each sub-layer,

they employ a residual connection followed by layer normalization. This means that the

output of each sub-layer is the normalization of the sum of x and Sublayer(x), where

Sublayer(x) is the function implemented by the sub-layer itself. All sub-layers in the

model produce an output of the same dimension to facilitate these residual connections.

Just like the encoder, the decoder is composed of a stack of identical layers, but instead

of having two sub-layers, it adds a third sub-layer, which will perform multi-head atten-

tion over the output of the encoder stack. Like in the encoder, the decoder also employs

residual connections around each sub-layer that are followed by a layer normalization.

To guarantee that the predictions for the position i can depend only on previously known

outputs, the sub-layers in the decoder stack are modified to prevent positions from at-

tending to subsequent positions and the output embeddings are offset by one position.

The authors of this model use a particular attention, which they call "Scaled Dot-

Product Attention", which can be seen in Figure 4.6. The input in this attention consists

of queries and keys that have a dimension dk and values that have dimensions dv . To

obtain the weights on the values, they compute the dot products of the query with all

the keys and divide each by
√
dk before applying a softmax function and getting the final

weights. This function can be seen in 4.19, where Q represents a matrix of the queries

packed together, K represents the matrix of the keys packed together and V represents

the matrix of the values packed together.

Figure 4.6: Scaled Dot-Product Attention [53].

Attention(Q,K,V ) = Softmax(
QK t√
dk

)V (4.19)

To allow the model to jointly attend to information from different representation

subspaces at different positions, the authors used multi-head attention. The multi-head

attention instead of performing a single attention function with dm-dimensional keys,
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values, and queries, linearly projects the queries, keys, and values with different, learned

linear projections h times to dk , dk and dv dimensions, respectively. Thus, the computation

of the attention function can be performed in parallel on each of these projected versions

of the queries, keys, and values, resulting in dv-dimensional output values. The model

then concatenates them and projects them to produce the final values as can be seen in

Figure 4.7.

Figure 4.7: Multi-head attention consists of several attention layers running in parallel
[53].

The Multi-head attention function can be seen in equation 4.20 where WQ
i , WK

i , W V
i

are parameter matrices of the projections and WO ∈Rhdv×dm .

MultiHead(Q,K,V ) = Concat(head1, ...,headh)WO (4.20)

Where

headi = Attention(QWQ
i ,KWK

i ,VW V
i ) (4.21)

The multi-head attention is used in three different ways in the Transformer. The first

one is by the encoder, which contains self-attention layers, where all of the keys, values,

and queries come from the previous layer in the encoder. Thus, each position in the

encoder can attend to all positions in the previous layer. The second way is in the decoder,

that just like in the encoder, has self-attention layers so each position in the decoder can

attend to all positions in the decoder up to that position (including it). To preserve the

auto-regressive property, they had to prevent leftward information flow in the decoder.

In order to do it, they implemented scaled dot-product attention by masking out, this

is, setting to -∞ every value in the input of the softmax which corresponds to an illegal

connection. The third and last way the multi-head attention is used is in the "encoder-

decoder attention" layer, where the queries come from the decoder layer and the memory

keys and values come from the output of the encoder. This way, every position in the

decoder can attend all positions in the input sequence.
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Besides the attention sub-layers, each layer, both in the encoder and in the decoder,

contain a fully connected feed-forward network applied to each position individually

and exactly in the same way. This consists of two linear transformations and a ReLU

activation. The linear transformations are the same for every position but with different

parameters for each layer.

They used learned embeddings to convert the input and output tokens to vectors

of dimension dmodel . They also use a linear transformation and softmax function to

convert the decoder output to predicted next-token probabilities. The Transformer shares

the same weight matrix between the two embedding layers and the pre-softmax linear

transformation. Moreover, in the embedding layers, those weights are multiplied by
√
dmodel . In order to find the best Transformer model for each dataset, we did a grid

search just like we did for LSTM and GRU where we tried different parameters in each

one of them. The different parameters tested in the different Transformer models were

the number of heads in the multi-head attention sub-layer, the number of encoder layers

in the encoder, the number of decoder layers in the decoder, and the dimension of the

feedforward network models.

4.3 Interpretable models

4.3.1 RuleFit

As we saw in Chapter 2.1.1, Rulefit uses a powerful learning method which is the learning

ensembles to make an interpretable algorithm. Rulefit uses this method by generating a

regression where the variables are rules created by a tree ensemble algorithm. This tree

ensemble algorithm can be any of our choice [27].

RuleFit was implemented using two different methods. The first one was using the

Python package "rulefit" which utilizes Gradient Boosting as tree ensemble algorithm.

The second method was a manual implementation of RuleFit. In order to manually imple-

ment RuleFit, the tree algorithm, the extraction of rules, and the LASSO regression were

individually implemented and then combined, resulting in RuleFit. Since the "rulefit"
package utilizes Gradient Boosting, we decided to follow the same approach and also use

Gradient Boosting as the tree ensemble algorithm.

The main goal of Gradient Boosting is to convert weak learners into strong learners

by training each new model concerning the error of the whole ensemble learnt so far, by

training it on a modified version of the original dataset. Gradient Boosting is an algorithm

that consecutively fits new models to achieve more accurate estimates of the response

variables. The main idea is to build new models that are maximally correlated with the

negative gradient of the loss function, associated with the whole ensemble [54]. We used

the squared error loss, whose equation can be seen in (4.22), as loss function, which results

in a consecutive error-fitting learning procedure, although, the loss function applied in a

Gradient Boosting algorithm can be arbitrary.
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MSE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi − ŷi)2. (4.22)

The algorithm starts by training a decision tree where each observation is assigned an

equal weight. After training the first decision tree, the algorithm evaluates it and increases

the weights of the observations that are harder to classify and lowers the weights for the

ones that are easier to classify. The second decision tree is grown on this weighted data,

where the goal is to improve upon the predictions of the first tree. Now that the model

has two decision trees, it computes the classification error from this 2-tree ensemble

and builds a third tree to predict the revised residuals. This process is repeated in an

additive manner for a specified number of iterations. The subsequent trees help to classify

observations that are not well classified by previous trees. The final predictions are

weighted sums of the predictions made by the previous models.

Whenever the algorithm grows a new tree, the algorithm updates [55], thus is, fits the

new tree to the ensemble, using the formula (4.23) where {Rjm}
J
1 are the disjoint regions

created by each terminal node (leaf) of the tree at the m-th step, bjm are the coefficients

and ρm is a value chosen to minimize a specified loss function.

Fm(x) = Fm−1(x) + ρmhm(x) (4.23)

The value ρm is calculated using the equation 4.24, where h(xi) is a decision tree.

ρm = argmin
ρ

N∑
i=1

L(yi ,Fm−1(xi) + ρh(xi)) (4.24)

The decision tree at the m-th step, hm(x) can be written as

hm(x) =
J∑

j=1

bjm1(x ∈ Rj ). (4.25)

In the first implementation of the RuleFit, this is, the implementation using the

Python package "rulefit", no tuning was necessary. For the manual implementation, we

tuned the Gradient Boosting on the learning rate, maximum number of trees, and the

maximum depth of each tree.

4.3.2 SIRUS

The Stable and Interpretable Rule Set (SIRUS) is an algorithm that follows some principles

from RuleFit as seen in Chapter 2.1.2. Just like RuleFit, it extracts rules from trees and

uses them in a regression to make predictions. The principal differences between RuleFit

and SIRUS are that instead of using a Gradient Boosting algorithm to generate the trees

SIRUS uses a Random Forest as the tree ensemble algorithm and instead of using the
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LASSO regression it uses the Ridge regression solution, which allows it to have better

stability according to the authors.

SIRUS was implemented using the R package "sirus". The parameter p0 that represents

the threshold to select the relevant rules was tuned through cross-validation by using the

function "sirus.cv". Moreover, we performed a study to see how changing it would affect

both the accuracy and sparsity of the model to see if we could find a better accuracy with a

few more rules than the obtained through cross-validation, but still maintain that number

low as we will see further. The number of trees created by SIRUS was automatically

defined, as the package creates the necessary number of trees until it achieves a stability

of 95%. Lastly, the maximum depth of the trees was left at 2, which is the default.

4.4 Proposed New Interpretable models

Besides the existing methods studied above, we propose four new Interpretable models

in this thesis.

4.4.1 REN: RuleFit with ElasticNet

The first method we propose follows the RuleFit architecture, this is, it starts with a tree

ensemble algorithm, followed by rule extraction from the generated trees, and finishes

with a regression model. We use the same tree ensemble algorithm as in RuleFit, the

Gradient Boosting, the difference from this model to the RuleFit is the fact that instead

of using the LASSO regression, we use the ElasticNet regression. With this change, we

expect to overcome some limitations of the LASSO regression. First, we expect to improve

the performance when there is a large dimensional data with few examples [56], and

secondly, it should provide a strong feature correlation since when there are multiple

features correlated with one another, Lasso picks one of them at random without caring

about which one it chooses while ElasticNet is likely to pick both.

The ElasticNet combines the penalty from LASSO, which is the L1 penalty with the

penalty from Ridge regression, which is, the L2 penalty. Using ElasticNet the coefficients

for the rules are obtained using the formula (4.26), where y is the observed value, X

represents all the features, this is, both the original features and the rules extracted, λ1

represent the regularization parameter for the LASSO regularizer, and λ2 represents the

regularization parameter for the Ridge regularizer.

β̂ = argmin
β

(||y −Xβ||2 +λ2||β||2 +λ1||β||1 (4.26)

To implement this model we started by using the tree algorithm and the rule extraction

methods we developed when implementing the different parts of RuleFit manually. After

that, we implemented the ElasticNet regression and fed it the extracted rules along with

the data.
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4.4.2 Interpretable Rules by DL-Learner

Our three other proposed new Interpretable methods start with a tree ensemble algorithm

just like RuleFit and SIRUS, followed by a rule selection made by the DL-Learner software,

and finish with a regression model that assigns a weight to each rule so we can ensemble

them. The tree ensemble algorithm we chose was the Gradient Boosting just like in

RuleFit (4.3.1). We start by extracting 2000 rules from the trees created by Gradient

Boosting. Following this extraction we clean the redundant rules, thus, if there is any

rule that can be simplified, we simplify it. This can be seen in the following example:

The rule

Month <= 7.5 & Day > 13.5 & Day > 12.5

Can be simplified to the rule

Month <= 7.5 & Day > 13.5

And maintain the exact same meaning, since if the number of the day is bigger than

13, it will logically be bigger than 12.

After cleaning the non-significant conditions of each rule, we start to prepare the data

for DL-Learner.

The DL-Learner is a software that provides a based machine learning tool to solve

supervised learning problems and helps to construct knowledge and learn about the

data [57]. It is biased toward short and human-readable definitions, which is exactly our

goal in this thesis, to obtain the shortest and most human-readable rules we can. The

DL-Learner application is written in Java.

DL-Learner uses a component-based model which has four types of components that

can be seen in figure 4.8. The four types of components are the knowledge source, which

integrates the background knowledge, the reasoning service, which provides connections

to an existing reasoner, the learning problem, which specifies the problem type to be

solved by an algorithm and a learning algorithm, which provides methods to solve one or

more specified learning problem types. Each of these types has various implemented com-

ponents. These different components can have their own configuration options, which

can be used to change the parameters of a component.

We take advantage of the DL-Learner software to help us understand which are the

most important and relevant rules from the 2000 rules extracted from the Gradient Boost-

ing Trees.

In order to do it, we create two files that DL-Learner needs to run, which are the

configuration and the background knowledge files. The configuration file is where we

define the type of problem, the algorithm that we want to use, the reasoner component,

and the name of the knowledge source.

The learning problem we are using is the Positive and Negative Examples, where

the goal is to find a class expression (a rule in our case) such that all (or many) positive
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Figure 4.8: The DL-Learner architecture is based on four component types. Each of these
component types can have its configuration options. A component manager can be used
to create, combine and configure components [57].

examples are instances of that class, this is, respect the rule, and none (or few) negative

examples are instances of that class, this is, do not respect the rule. The goal is to find

a class expression (a rule) that generalizes to unseen individuals and is readable. Since

we are using the Positive and Negative Examples, in the configuration file that we give

to DL-Learner, besides defining the different components, we also identify which are the

positive and which are the negative examples by giving the id of each instance.

The algorithm we use is the Class Expression Learning for Ontology Engineering

(CELOE), which is the best class learning algorithm available within DL-Learner [57].

This algorithm follows the "generate and test" approach, which means that learning is seen

as a search process where it generates several class expressions and tests them against a

background knowledge base [58]. Each class expression is then evaluated using a heuristic

which measures how well a given class expression fits the learning problem and how it is

used to guide the search in the learning problem. Furthermore, CELOE guarantees that

the returned class expressions, this is, the rules, are minimal in the sense that we cannot

remove any part of them (any condition) without getting a different expression.

The reasoner component we use is the Closed World Reasoner, which tests whether

an individual is an instance of a class or not.

The knowledge source used is a file we create where we have each instance (each

data point) class expressions, which correspond to all the conditions from the 2000 rules

generated by the Gradient Boosting Trees that the datapoint respects. An example of part

of this file can be seen in image 4.9, where "sample" indicates the sample id and "af", "ai",

"ak", "an" and "ao" represent conditions of rules, for example "af" represents "Day > 6.5".
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Changing the condition into a combination of letters was necessary since DL-Learner did

not accept the knowledge base if there were numbers, spaces, or operators like ">=".

Figure 4.9: Sample of part of a knowledge base file.

In order to create the file that will be used as knowledge source, we first create a new

dataset. To create that dataset, we start by creating a new column named "target" in our

original dataset. This column will have values between 1 and 10 (this interval could be

another interval chosen). For each target value, the DL-Learner software will give us the

best rules to separate the positive from the negative examples, thus, it will try to find the

best rule that identifies data points with that target value.

After adding the column "target" to our dataset, we shrink our values from the column

"Waiting_Time", which is the column that has the values we are trying to predict, to have

values between 1 and 10, and fill the column "target" with those values. After having the

column "target" filled, we add each condition of our rules as a column to our dataset. For

example the rule "Month <= 7.5 & Day > 13.5" would give birth to two new columns in

the dataset, the column "Month <=7.5" and the column "Day > 13.5". The value in each

row is either 1 or 0, depending if the data point satisfies that condition (and thus has the

value 1) or not (and thus has the value 0). To finish the dataset that helps us create the

knowledge source file for DL-Learner, we drop the initial columns from the dataset, thus,

leaving the dataset only with the target, the index, and the conditions columns.

With the new dataset created, for each target value, we create 10 configuration and

10 knowledge base files instead of 1 so DL-Learner has different combinations of positive

and negative examples, thus, different data points that have a target value of 1 (positive

examples) and data points that have a target value of 0 (negative examples), to learn from

different combinations. These files are necessary so DL-Learner can learn from positive

and negative examples, thus, learning which conditions are most relevant to identify

data points that have that target value. DL-Learner then returns the top 10 rules (either a

single condition or a combination of conditions) it found to separate positive and negative

examples of this target value, this is, the best rules to identify data points that have that

target value. Since DL-Learner returns us the top 10 rules for each of the 10 targets,

we get 100 rules, 10 for each target value, but we only extract the one that has the best

accuracy and shortest number of conditions for each target value, this is, if there is more

than 1 rule with the best accuracy, we only extract the one that has the shortest number

of conditions, which leave us with 1 rule for each target value.

After running the DL-Learner for the 10 target values, we get 10 rules. Following that,
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we convert these rules, which are in text files, into the same format as the rules that we

get from the Gradient Boosting Trees. To do so, we first put each rule in the disjunctive

normal form and then separate the literals of the rules that have 1 or more disjunctions

into different rules, so we get simplified rules with no disjunctions (just like the ones we

get from the trees). This may result in ending up with more than 10 rules.

Since we always prepare for the worst-case scenario, having 10 rules would not be

enough for us, the regression model would not have many rules to choose from. So, to

have more and varied rules, we repeat the previous step 5 times, this is, we create 5 new

datasets to create different knowledge base and configuration files for DL-Learner instead

of just 1 and run it 5 times. This results in having a minimum of 50 rules, which was

already better for us.

A new problem arose when we checked the rules from running DL-Learner 5 times.

We noticed that many of the rules were the same as can be seen in image 4.10. In order

to try to obtain more varied and different rules from DL-Learner, in addition to feeding

it files relative to the entire dataset 5 times, we fed it files relative to only parts of the

original dataset. To feed DL-Learner files that were relative only to parts of the original

dataset, we created smaller datasets that only have part of the original dataset to be able to

create those files. To do so, we choose the 15 most common contiguous intervals of values

of the waiting time in the original dataset and created 15 extra datasets to generate new

configuration and knowledge base files to feed to DL-Learner. By feeding DL-Learner

these new files, we get at least 150 extra rules. Since these rules are trying to predict

different observations, we obtain a greater variety of rules, and thus, avoid the original

problem where many of the rules were the same.

Figure 4.10: Example of rules given by DL-Learner

Following the conversion of the rules, we clean the redundant rules again, just like

we did with the 2000 rules that we extracted from the Gradient Boosting Trees so we get

simplified and shortest rules, to make sure there are no redundant rules.

After getting the rules ready, we obtain the coefficients for each one of them by run-

ning different forms of regularization in order to ensemble them after. This motivated us

to build three different models, one using the LASSO regression solution, one using the

ElasticNet regression solution, and a third using the Ridge regression solution.

60



4.4. PROPOSED NEW INTERPRETABLE MODELS

4.4.2.1 RDLL: Interpretable Rules by DL-Learner and LASSO Regression

The first model with this architecture that we built uses the same form of regularization

as Rulefit, the LASSO regression. As we saw in Chapter 2.1.1 this regression solution

can be described as 2.1. The name RDLL derives from the combination of Rules with

DL-Learner and LASSO.

4.4.2.2 RDLE: Interpretable Rules by DL-Learner and ElasticNet Regression

The second approach to see if we could get better performance with our model was to

use the ElasticNet regression instead of the LASSO regression. The ElasticNet combines

the penalty from LASSO, this is, the L1 penalty with the penalty from Ridge regression,

this is, the L2 penalty, to overcome certain limitations of the LASSO algorithm, as seen in

Section 4.4.1. Using ElasticNet the coefficients for the rules are obtained with the formula

(4.26). The name RDLE derives from the combination of Rules with DL-Learner and

ElasticNet.

4.4.2.3 RDLR: Interpretable Rules by DL-Learner and Ridge Regression

Finally, our last model uses Ridge regression after obtaining the rules from DL-Learner.

As we saw in Chapter 2.1.2, the Ridge regression should give us more stability than

LASSO. The coefficients with this regression are obtained using the formula (2.2). The

name RDLR derives from the combination of Rules with DL-Learner and Ridge.
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Results

5.1 Accuracy

In this section, we compare the different models concerning their accuracy. The accuracy

measure that we chose to analyze was the Mean Absolute Error (MAE).

5.1.1 Non-Interpretable Models

For the non Interpretable Models, the Accuracy was measured through a 5-fold cross-

validation procedure. To guarantee that the models did not consider information from

the future when making the predictions, each prediction was done by training the model

with the data until the day before that prediction. Each model predicted the waiting

time for the days April 18, April 19, April 20, April 21, and April 22 of 2019. When

predicting the waiting time on April 18 the model was trained with data until April 17,

the day before, then, to predict the mean waiting time on April 19, the model was trained

with data until April 18, and so on. The MAE was computed for each fold, and then the

average resulted in the final score for each model.

To find the best model for each emergency level for the methods using neural networks,

this is, the LSTM, the GRU, and the Transformer, we also used a 5-fold cross-validation

when testing different parameters to find the best model.

5.1.1.1 ARIMA

The first non-interpretable model implemented was the ARIMA model. The results of

this model can be seen in Table 5.1. We notice clearly that the values for emergency level

1 were the hardest to predict, which was expected since it is the emergency level with the

highest variation on the time a patient may have to wait. This variation makes it harder

to make accurate forecasts of the waiting time. On the other hand, emergency level 4 was

the easiest for this model to predict, which was also expected since it is the emergency

level with the lowest variation in the waiting time.
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Emergency Level 1 2 3 4
MAE 35.46 20.45 17.16 9.34

Table 5.1: MAE value for each emergency level in the dataset without the service column
for the baseline model.

5.1.1.2 SARIMA

The results obtained with SARIMA (Table 5.2) show us that emergency level 1 was once

again the hardest to predict. Unlike in the ARIMA, where the higher the emergency level,

the better the forecast, the SARIMA model had a better performance on emergency level

2 than on emergency level 3, something that was not expected, since the variation on

emergency level 2 is higher than on the emergency level 3. Moreover, when we compare

the results from the SARIMA (Table 5.2) and the ARIMA (Table 5.1) models, we notice

that the extra parameters of SARIMA (regarding the seasonality) made the accuracy worse

for the emergency levels 1 and 3.

Emergency Level 1 2 3 4
MAE 36.38 15.72 19.07 9.07

Table 5.2: MAE value for each emergency level in the dataset without the service column
for the SARIMA model.

5.1.1.3 Prophet

Just like ARIMA, Prophet had smaller MAE values the higher the emergency level. The

MAE values on emergency levels 1 and 4 were similar to the ARIMA and SARIMA values.

Differently, for emergency levels 2 and 3, Prophet had significantly higher MAE values

than ARIMA and SARIMA. On these emergency levels, Prophet had a MAE of approxi-

mately more 10 minutes than SARIMA on emergency level 2 and approximately more 3

minutes than ARIMA on emergency level 3.

Emergency Level 1 2 3 4
MAE 35.40 25.65 20.64 9.77

Table 5.3: MAE value for each emergency level in the dataset for the Prophet model.

5.1.1.4 LSTM

The LSTM was the first recurrent neural network we implemented. When hyper tuning

the LSTM parameters, as stated in Chapter 4.2.4.1, for the different emergency levels,

we tested different learning rates, different sizes of feature maps in each hidden state,

different dropout values, and different loss functions. For emergency level 1, the best set

of parameters was a learning rate of 0.001, a size of 5 for the feature maps in each hidden
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state, a dropout of 0, and the L1 loss. For emergency level 2 the parameters were the

same as for emergency level 1, except for the learning rate which was 0.00001, and the

loss, which was the MSE loss. For emergency level 3, the parameters were the same as for

emergency level 2, except the learning rate which was 0.001. Lastly, for emergency level

4, the best set of parameters were a learning rate of 0.001, a size of 200 for the feature

maps in each hidden state, a dropout of 0, and the L1 loss. The MAE values of LSTM

are depicted in Table 5.4. Although the MAE value for emergency level 1 was again the

highest, it was significantly better than the previous models. LSTM also achieved very

low errors on emergency levels 2 and 3 when compared to the previous models, but had

a slightly higher MAE value on emergency level 4.

Emergency Level 1 2 3 4
MAE 24.76 11.09 7.13 10.76

Table 5.4: MAE value for each emergency level in the dataset for the LSTM model.

5.1.1.5 GRU

As mentioned, the GRU was tuned on the same parameters as the LSTM. The best set of

parameters for the GRU models was a learning rate of 0.001, a size of 5 for the feature

maps in each hidden state, a dropout of 0, and the L1 loss for emergency level 1; a learning

rate of 0.00001, a size of 5 for the feature maps in each hidden state, a dropout of 0 and

the MSE loss for emergency level 2; a learning rate of 0.001, a size of 5 for the feature

maps in each hidden state, a dropout of 0 and the MSE loss for emergency level 3 and a

learning rate of 0.001, a size of 200 for the feature maps in each hidden state, a dropout

of 0 and the L1 loss for emergency level 4. The results of the different GRU models can

be observed in Table 5.5. We notice that the MAE values in every emergency level were

higher than in the LSTM model, especially on the emergency level 4, which had almost

more 4 minutes of error than LSTM. Nevertheless, the accuracy of GRU was still better

on emergency levels 1,2, and 3 than the ARIMA, SARIMA, and Prophet forecasts.

Emergency Level 1 2 3 4
MAE 26.80 12.39 7.60 14.41

Table 5.5: MAE value for each emergency level in the dataset for the GRU model.

5.1.1.6 Transformer

As stated in Chapter 4.2.5, the Transformer was tuned on the number of heads in the

multi-head attention sub-layer, the number of encoder layers in the encoder, the number

of decoder layers in the decoder, and on the dimension of the feedforward network models.

For emergency level 1, the best set of parameters were 8 heads in the multi-head attention

sub-layer, 4 encoders, 4 decoders, and a dimension of 2048 for the feedforward network
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model. For emergency level 2, the best set of parameters were 2 heads in the multi-head

attention sub-layer, 5 encoders, 5 decoders, and a dimension of 1024 for the feedforward

network model. For emergency level 3 the best set of parameters was the same as for

emergency level 2 except for the number of heads in the multi-head attention sub-layer,

which was 4. Lastly, for emergency level 4, the best parameters were 8 heads in the

multi-head attention sub-layer, 5 encoders, 5 decoders, and a dimension of 256 for the

feedforward network model. The results of Transformer can be seen in Table 5.6. These

values show us that Transformer had similar behavior as LSTM and GRU, this is, its

highest MAE value was on emergency level 1 and the lowest on emergency level 3. The

values were similar both to GRU and LSTM on emergency level 1 and worse on the

other emergency levels, but still better than ARIMA, SARIMA, and Prophet except on

emergency level 4.

Emergency Level 1 2 3 4
MAE 25.44 14.26 10.37 13.95

Table 5.6: MAE value for each emergency level in the dataset for the Transformer model.

5.1.2 Interpretable Models

For the interpretable models, first, to have a fair comparison with the Time-Series Models,

which were tested on datasets that do not include a column with the service people are

going to, we measured their accuracy on the datasets that grouped the data by day, mean-

ing that we grouped the different services of each day into a single row so we could have

the same dataset as the TimeSeries models, as seen in Chapter 4.1. After, in an attempt

to give the information about the past to the interpretable models, we added a column

with the waiting time of the previous day. Lastly, we got the different models accuracies

for the datasets including the column "Service", to have a waiting time according to the

service people would go to. As stated in 4.1, the variation of the waiting time in this

dataset is higher, and thus, we got higher MAE values than on the dataset without the

column "Service", as we will see.

For all the models except the automatic implementation of RuleFit, using the Python

package rulefit, and SIRUS, we hyper tuned the alpha value to achieve less relevant rules

than the ones obtained by the respective model cross-validation method, which gives

more importance to the accuracy rather than the number of rules. This alpha is the value

that multiplies the penalty term in the regression equation. To get a lower number of

significant rules that have an impact on the final result than the original number we

experimented with different alpha values. Higher alpha values mean higher penalty

terms, and consequently, less relevant (with a non-null weight) rules. A study about the

number of relevant rules and respective accuracy in each model for each dataset can be

seen in A, where we present a plot for each model for each dataset that shows the relation

of the models between the number of relevant rules and accuracy. Here we will show the
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results of the best compromise, in our opinion, of the number of rules and accuracy. In

Chapter 5.1.3 we will see a plot of both the training accuracies and validation accuracies

according to the number of rules combining all models.

The results obtained can be seen in the following sections separated by models.

5.1.2.1 RuleFit

For the RuleFit model first, we compare the results from the dataset without the service

column, between the two different implementations, the automatic implementation using

the Python package "rulefit" and our manual implementation. From Tables 5.7 and 5.8

we notice that the values are very similar and there is no considerable discrepancy of

trying different implementations for this model except in emergency level 1, where our

implementation of Rulefit got a slightly better MAE (38.31 versus 39.7). In all other

emergency levels, the difference in the MAE value was less than 1 minute.

Emergency Level 1 2 3 4
MAE 39.7 21.02 14.24 7.76

Table 5.7: MAE value for each emergency level in the dataset without the service column
for the RuleFit model using the Python package "rulefit".

Emergency Level 1 2 3 4
MAE 38.31 20.59 14.91 8.07

Table 5.8: MAE value for each emergency level in the dataset without the service column
for the RuleFit model using our implementation.

The Tables 5.9 and 5.10 show the accuracies achieved by the RuleFit models on the

dataset without the service column, but with a column regarding the waiting time of the

previous day. We notice that this extra column improved the accuracy in all emergency

levels in both implementations. Moreover, we noticed a considerable worse accuracy on

the emergency level 1 on our implementation of RuleFit having a MAE value of over 2

minutes higher (MAE ≈ 37.72) than the MAE value of the automatic implementation of

RuleFit (MAE ≈ 35.44). For the other emergency levels, the accuracy of our implementa-

tion of RuleFit was slightly worse on emergency levels 3 and 4 (MAE ≈ 13.7 and MAE ≈
7.92, respectively) compared to the automatic implementation (MAE ≈ 13.01 and MAE

≈ 7.66, respectively) and slightly better on the emergency level 2 (MAE ≈ 20.08 on our

implementation and MAE ≈ 20.19 on the automatic implementation).

Lastly, we compare the results from the dataset with the service column, which served

only to compare interpretable models between themselves. We can see the results from

the automatic implementation in the Table 5.11 and the results from our own RuleFit

implementation in Table 5.12. We observe that the implementation using the Python

package has better accuracies in all emergency levels. Nevertheless, As we can see in
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Emergency Level 1 2 3 4
MAE 35.44 20.19 13.01 7.66

Table 5.9: MAE value for each emergency level in the dataset without the service column
and with a column regarding the waiting time of the previous day for the RuleFit model
using the Python package "rulefit".

Emergency Level 1 2 3 4
MAE 37.72 20.08 13.7 7.92

Table 5.10: MAE value for each emergency level in the dataset without the service column
and with a column regarding the waiting time of the previous day for the RuleFit model
using our implementation.

Appendix A, if using a smaller alpha value and thus, use more rules, we would achieve

better accuracy for the emergency level 1 on the manual implementation of RuleFit than

on the implementation using the Python package rulefit.

Emergency Level 1 2 3 4
MAE 52.91 22.64 15.75 9.76

Table 5.11: MAE value for each emergency level in the dataset with the service column
for the RuleFit model using the Python package "rulefit".

Emergency Level 1 2 3 4
MAE 54.05 25.12 18.56 12.17

Table 5.12: MAE value for each emergency level in the dataset with the service column
for the RuleFit model using our implementation.

5.1.2.2 SIRUS

The results shown here were obtained using the cross-validation method implemented

in the "sirus" package, which chooses the model with fewer rules. We still analyzed how

changing the p0 value in SIRUS affected the number of rules and the achieved accuracies

in Appendix A, where we can see the plots created and studied, that compare the accuracy

according to the number of relevant rules for each of the emergency levels in each dataset.

The accuracies of the SIRUS model regarding the first group of datasets can be seen

in Table 5.13 and are very similar to the values obtained with the RuleFit model, showing

that the two state-of-the-art rule-based methods perform very similar in this dataset.

Emergency Level 1 2 3 4
MAE 39.84 20.71 14.54 8.27

Table 5.13: MAE value for each emergency level in the dataset without the service column
for the SIRUS model.
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When we added the column with the past values of the waiting time, the accuracy

improved in all but one emergency level. On emergency level 3 the MAE value was

higher than in the dataset without the past value of the waiting time, which shows that

it is not always linear that adding past information improves the model performance.

Nevertheless, the accuracy improved on all the other 3 emergency levels, as can be seen

in Table 5.14, although, not as much as in RuleFit.

Emergency Level 1 2 3 4
MAE 38.27 20.07 15.08 7.87

Table 5.14: MAE value for each emergency level in the dataset without the service column
and with a column regarding the waiting time of the previous day for the SIRUS model.

The last SIRUS model included a column with the type of service each day. The

results were very similar to RuleFit in emergency level 1 but significantly better in all

other emergency levels as can be observed in Table 5.15.

Emergency Level 1 2 3 4
MAE 53.80 20.96 14.83 7.92

Table 5.15: MAE value for each emergency level in the dataset with the service column
for the SIRUS model.

5.1.2.3 REN

By running the ElasticNet regression only one time in the REN model, ElasticNet was

attributing significance to a lot of rules (maybe because the quality of the rules was not the

best). In an attempt to make it choose fewer rules, besides hyper tuning the alpha value

that multiplies the penalty term, we experimented with using the ElasticNet regression

multiple times to see how it would affect the results both in terms of accuracy and number

of rules. First, we used it only one time, then after using it one time, we extracted only

the relevant rules (the ones with a non-null weight) and fed only those rules again to

ElasticNet a second time. Lastly, on a third model, we repeat the previous step one more

time (thus, running ElasticNet three times). Here we will see the results of the three

different REN models. We will refer to the model that uses the ElasticNet regression

solution one time as REN(1), the model that uses it two times as REN(2), and to the model

that runs it three times as REN(3).

As previously stated, the MAE values shown here were chosen from the plots shown

in Appendix A since they were the best compromise, in our opinion, between the number

of rules and accuracy, and a different value was chosen for each of the three models.

The accuracy of our three different REN models on the first dataset is shown in Table

5.16. We notice that the accuracy on the emergency level 1 got slightly worse the more

times we ran the ElasticNet regression, although, the number of relevant rules also got

significantly lower as we will see further.
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Emergency Level 1 2 3 4
REN(1) MAE 39.55 20.92 14.66 8.65
REN(2) MAE 39.65 20.91 15.02 8.57
REN(3) MAE 40.55 20.92 15.03 8.56

Table 5.16: MAE value for each emergency level in the dataset without the service column
for the REN models.

On the datasets with the information about the past waiting time, we achieved the

results presented in Table 5.17. We notice that for the emergency level 2, the MAE value

was significantly lower on the model running the ElasticNet regression solution two times

( MAE ≈ 18.71 ) compared to the other two variations of our REN model, which achieved

a MAE of ≈ 19.7 when running the regression one time and a MAE of ≈ 20.73 when

running it three times.

Emergency Level 1 2 3 4
REN(1) MAE 39.59 19.7 14.89 7.9
REN(2) MAE 39.53 18.71 15.11 8.03
REN(3) MAE 40.83 20.73 15.18 8.37

Table 5.17: MAE value for each emergency level in the dataset without the service column
and with a column regarding the waiting time of the previous day for the REN models.

In the dataset that included the type of service, we obtained the accuracies seen in

Table 5.18. Here we can notice a very significant increase in the MAE values the more

times we ran the ElasticNet regression solution. Nevertheless, as we will see further, the

number of relevant rules also significantly decreases. Moreover, running the ElasticNet

regression solution just one time gave us a better MAE value for the emergency level 1 (

≈ 51.68 ) than the values obtained by RuleFit and SIRUS for this same dataset, ≈ 52.91

and ≈ 53.80, respectively.

Emergency Level 1 2 3 4
REN(1) MAE 51.68 27.71 17.28 9.84
REN(2) MAE 55.75 28.27 18.43 10.82
REN(3) MAE 60.67 30.77 21.04 13.39

Table 5.18: MAE value for each emergency level in the dataset with the service column
for the REN models.

5.1.2.4 RDLL, RDLE, and RDLR

RDLL, RDLE, and RDLR were developed and implemented with the goal of getting rules

with better quality and thus achieving better accuracy with a lower number of rules. In

that sense, looking at the accuracy alone in these models is not enough, as we must take

into consideration the number of rules they use, which we will see in Section 5.2. The
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accuracy achieved by these models in the first dataset can be seen in Table 5.19. We notice

that the MAE values of the RDLE model were higher for almost every emergency level

(1,2 and 3) when compared to RDLL and RDLR. For emergency level 4, the MAE values

were very similar. It is interesting to notice that the RDLR achieved a considerably better

accuracy on the emergency level 2 when compared to RDLL and RDLE.

Emergency Level 1 2 3 4
RDLL MAE 39.01 20.69 14.89 8.14
RDLE MAE 40.21 21.05 15.36 8.07
RDLRMAE 39.09 18.68 14.82 7.96

Table 5.19: MAE value for each emergency level in the dataset without the service column
for the RDLL, RDLE, and RDLR models.

Regarding the second set of datasets, after adding the column with the past informa-

tion about the waiting time, we observe (Table 5.20) that once again the RDLE model

achieved the worse accuracy of the 3 in all emergency levels except in emergency level

3, where RDLL performed worse. The RDLR model also outperformed the other two in

these datasets (in terms of accuracy), and was the model out of the three that improved

its performance with the new information, especially in emergency levels 1 and 3.

Emergency Level 1 2 3 4
RDLL MAE 39.51 18.74 13.52 7.87
RDLE MAE 40.94 20.42 15.02 8.35
RDLRMAE 37.72 18.57 13.69 7.84

Table 5.20: MAE value for each emergency level in the dataset without the service column
and with a column regarding the waiting time of the previous day for the RDLL, RDLE,
and RDLR models.

Lastly, in the dataset with the service column, the performance of the 3 models, re-

garding their accuracy, can be seen in Table 5.21. Once again the RDLE model achieved

the worse accuracy out of the three in every emergency level. Moreover, the accuracies

of the RDLL and the RDLR model were very similar in every emergency level except in

emergency level 1, where RDLR achieved slightly better accuracy.

Emergency Level 1 2 3 4
RDLL MAE 52.88 24.79 18.32 10.95
RDLE MAE 58.68 29.49 21.71 12.59
RDLRMAE 51.19 24.28 17.85 11.17

Table 5.21: MAE value for each emergency level in the dataset with the service column
for the RDLL, RDLE, and RDLE models.
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5.1.3 Comparison

In Figure 5.1 we can compare the MAE values of the top three non-interpretable mod-

els and the top three interpretable models implemented among the different emergency

levels. It is important to notice that this comparison is not completely fair since the inter-

pretable models have access to different information from the non-interpretable models.

While the non-interpretable models have access to information about all the previous

waiting times in the dataset, the interpretable models only have access to information

about the current date they are predicting or the current date and the waiting time of the

previous day.

The three methods using neural networks, LSTM, GRU, and Transformer, not only

have better accuracy than the other non-interpretable models, but they also stand out in

this figure having low errors on emergency levels 1, 2, and 3. Contrarily, on emergency

level 4, the interpretable methods were able to outperform the non-interpretable methods.

This plot shows us that it is possible to have an interpretable model with better accuracy

than a non-interpretable model when predicting the waiting time in the emergency de-

partment of a hospital and is something that should be studied before implementing a

non-interpretable model.

Figure 5.2 compares the MAE values of the interpretable models among the different

emergency levels on the dataset with the extra information regarding the type of ser-

vice on each day. On emergency level 1 the RDLR model had the best accuracy, closely

followed by REN(1). RDLL, SIRUS, and RuleFit had very similar MAE values on this

emergency level, which were not far from the ones achieved by RDLR. For emergency

levels 2,3, and 4, SIRUS achieved the lowest MAE values, closely followed by RuleFit on

emergency levels 2 and 3. RDLL and RDLR had very similar MAE values on emergency

levels 2,3, and 4 and were always lower than the ones achieved by RDLE. REN(3) had

constantly one of the worst MAE values, being the worst in emergency levels 1,2, and 4.
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Figure 5.1: Comparison of the MAE values of the best 3 non-interpretable models and
the best 3 interpretable models in the different emergency levels. The prefix (a) after
the interpretable model name means that the best accuracy was achieved on the dataset
without the information about the waiting time of the previous day and the prefix (b)
means that it was achieved on the dataset with the information about the previous day.
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Figure 5.2: Comparison of the MAE values of all the interpretable models in the different
emergency levels on the dataset with the column regarding the type of service.
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5.2 Complexity

In this chapter, we compare the complexity of all models in terms of how difficult it is

to understand them. For the interpretable models, this means comparing their sparsity

and the number of rules each one uses. For the non-interpretable models, we can use the

number of parameters each model uses as a proxy for this measure.

5.2.1 Interpretable Models

Regarding the interpretable models, a model with too many rules, even if all the rules are

individually understandable, may not be interpretable as a whole.

On the first dataset, the one without the "service" column and without the information

about the past, the number of rules each algorithm assigned a non-null weight, this is,

the number of relevant rules, in the different emergency levels, can be seen in Table 5.22.

The RDLR model included a very high number of rules for all the emergency levels (86,

81, 93, and 87), and thus, we can not consider it interpretable for this dataset. The same

happened to REN (1) in emergency levels 1 and 3 and REN (2) in emergency level 1. The

best models in this dataset, regarding sparsity, were SIRUS, REN (3), and RDLL, which

achieved the lowest mean number of rules for all the emergency levels, 2.75, 2.25, and

4 respectively. Nevertheless, RDLE achieved the second lower number of rules (together

with REN(3)) for emergency level 1, and our implementation of RuleFit achieved the

second lowest number of rules for emergency level 4 (together with SIRUS, REN(1) and

RDLL).

Emergency Level 1 2 3 4 Mean
RuleFit (1) 12 8 5 7 8
RuleFit (2) 22 7 4 3 5.5
SIRUS 2 3 3 3 2.75
REN (1) 185 11 49 3 62
REN (2) 66 5 6 7 21
REN (3) 4 1 2 2 2.25
RDLL 7 3 3 3 4
RDLE 4 10 5 6 6.25
RDLR 86 81 93 87 86.75

Table 5.22: Number of Rules in each model for the dataset without the "service " column.
RuleFit (1) - Toolbox implementation of RuleFit, RuleFit (2) - Our implementation of
RuleFit.

Regarding the second dataset, with the column containing information about the wait-

ing time of the previous day, the number of significant rules for each model can be seen

in Table 5.23. The first thing we notice when we compare the Tables 5.22 and 5.23 is the

significant increase in the number of rules that the automatic implementation of RuleFit

has in this dataset, its mean number of rules went from 8 to 85.5. Moreover, we notice

a great difference in the number of rules from our implementation of RuleFit (mean of
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9.25) to the implementation using the Python package "rulefit" on every emergency level.

Once again the RDLR model achieved a very high number of rules at every emergency

level, thus, we can not consider it interpretable again in this dataset. The same thing hap-

pened with REN(1) and REN(2) which also achieved a very high number of rules for every

emergency level in this dataset. SIRUS, REN(3), and RDLL were once again the models

with the lowest mean number of rules. Even though our implementation of RuleFit got

the lowest number of rules for emergency level 1 (3), it has a higher number of relevant

rules for the other emergency levels.

Emergency Level 1 2 3 4 Mean
RuleFit (1) 48 160 48 86 85.5
RuleFit (2) 3 15 7 12 9.25
SIRUS 4 2 3 5 3.5
REN (1) 337 142 115 90 171
REN (2) 129 75 16 32 63
REN (3) 8 7 5 2 5.5
RDLL 4 4 6 3 4.75
RDLE 6 7 2 24 9.75
RDLR 120 137 138 187 145.5

Table 5.23: Number of Rules in each model for the dataset with the extra column regard-
ing the waiting time of the previous day. RuleFit (1) - Toolbox implementation of RuleFit,
RuleFit (2) - Our implementation of RuleFit.

On the third dataset, the one including the "service" column, we notice once again

that the toolbox implementation of RuleFit and the algorithms REN(1), REN(2), and

RDLR have a very high number of rules (Table 5.24). The difference from the automatic

implementation of RuleFit to our implementation of RuleFit is once again huge, showing

the importance that hyper-tuning the alpha value on the regression equation had. Once

more, the SIRUS, RDLL, and REN(3) were the 3 models with the lowest mean number of

rules, although, our implementation of RuleFit and RDLE model were very close to the

REN(3) mean number of relevant rules (7.25 versus 7). For emergency levels 1 and 4, the

SIRUS and the RDLL models achieved the lowest number of relevant rules. SIRUS also

achieved the lowest number of relevant rules for emergency level 2, while RDLL achieved

the lowest number of rules for emergency level 3.

5.2.2 Non-Interpretable Models

Regarding the complexity of the non-interpretable models, we measure it through the

number of parameters each model uses (Table 5.25). We notice an enormous difference be-

tween the number of parameters LSTM, GRU, and Transformer use compared to ARIMA,

SARIMA, and Prophet. This is because of the neural networks these models use, which

increase a lot their number of parameters (and thus, their complexity).
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Emergency Level 1 2 3 4 Mean
RuleFit (1) 46 63 60 24 48.25
RuleFit (2) 8 7 8 6 7.25
SIRUS 3 3 4 3 3.25
REN (1) 510 272 348 389 379.75
REN (2) 64 61 52 96 68.25
REN (3) 6 7 5 10 7
RDLL 3 4 3 3 3.25
RDLE 9 8 4 8 7.25
RDLR 172 137 181 174 166

Table 5.24: Number of Rules in each model for the dataset with the "service " column.
RuleFit (1) - Toolbox implementation of RuleFit, RuleFit (2) - Our implementation of
RuleFit.

Emergency Level 1 2 3 4 Mean
ARIMA 5 5 5 5 5
SARIMA 9 9 9 9 9
Prophet 8 8 8 8 8
LSTM 13300 173000 2900 426 47406.5
GRU 129000 2200 2200 129000 65600
Transformer 2300000 1600000 1600000 583000 1520750

Table 5.25: Number of parameters of the different non-interpretable models in the differ-
ent emergency levels.

5.3 Sparsity versus Accuracy

The last step of this thesis was a comparison between the accuracy of the interpretable

models and their sparsity, this is, the number of rules to which they attribute a non-null

weight. To change the number of relevant rules (the number of rules to which the models

attribute non-null weight), as stated before, we changed the alpha value, which controls

the penalty term in the regression equation, where higher values of alpha result in less

relevant rules since the penalty term would be higher, and lower alpha values result in

giving a non-null weight to more rules.

First, we make this comparison on the dataset where we do not have the "service"

column, secondly on the dataset where each row has extra information about the waiting

time of the previous day, and finally on the third dataset, which contains the "service"

column. The RuleFit method presented in this section is our implementation of RuleFit,

where we could change the alpha value (the value that controls the strength of the penalty

term). We did not include the model RDLR in any of these comparison plots since the

number of rules never changed when changing the alpha value. It was also opted to leave

REN(1) out because of its very high number of rules that would diminish all the other

lines and would make them hard to visualize. Nevertheless, RDLR and REN(1) plots can

be individually seen in Appendix A together with the plots of all the other models.
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On the dataset without the "service" column and without the information about the

previous day, we can see how changing the alpha value, and thus, the number of relevant

rules (this is, the rules with a non-null weight) affected every model accuracy on Figure

5.3. We notice that for the first emergency level the SIRUS and the RDLL models behave

very similarly and have very similar values in accuracy when using the same number

of relevant rules. RuleFit seems to have better accuracy when using more rules in this

emergency level, while REN(2), REN(3), and RDLE have worse accuracies than the other

models, even when using more rules.

On the second emergency level, all models except the REN(2) behave very similarly

when using more and less relevant rules, this is, they all start with better and similar

accuracies when using more rules and get worse accuracies (and also similar) when using

less relevant rules.

For emergency level 3, we notice that SIRUS has always the lowest relation between

the number of rules and MAE, especially when using fewer rules. RDLL has a different

behavior from every other model in this emergency level, its accuracy seems to get better

when using fewer rules, which can be a result of overfitting when using more relevant

rules.

On emergency level 4, the RuleFit model always achieves a better accuracy when using

the same amount of relevant rules as the other models. Nonetheless, it is closely followed

by RDLL when using less relevant rules and its behavior is similar to all the other models

in this emergency level.

Regarding the dataset containing information about the previous day, the relation

between the number of relevant rules and accuracy for the different models except the

REN(1) and the RDLR can be seen in Figure 5.4.

For emergency level 1, RuleFit has a different line from all the other models, it starts

with a bad accuracy when using more relevant rules and gets a better accuracy when using

less relevant rules. This is because the model is overfitted when using a lot of rules as can

be seen in Appendix A, where the training accuracy is very low when using more relevant

rules but the validation accuracy is high and generalized better with a lower number of

rules. REN(2), REN(3), RDLL, and RDLE all saw their accuracies getting worse the fewer

rules they used. SIRUS, on the other hand, behaved differently, its accuracy seemed to

be sometimes better and sometimes worse with more rules, which may be caused by the

rules the model chooses, some may have been worse than others. RuleFit has the best

accuracy on this emergency level when using a lower number of relevant rules.

For emergency level 2 we noticed that the RDLL model did not have significantly

better accuracy when using more rules, unlike all the other models which had worse

accuracies when using a lower number of rules. The RDLL and the SIRUS models seem to

have the best compromise between the number of rules and accuracy in this emergency

level, where RDLL has better accuracy when using less relevant rules.

On emergency levels 3 and 4 all models behaved similarly. They all had better accura-

cies when giving importance to more rules and they all got worse the less relevant rules
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Figure 5.3: Relation between the number of relevant rules (rules given a non-null weight
by the regression equation) with the Mean Absolute Error in the different emergency
levels for RuleFit, SIRUS, REN(2), REN(3), RDLL, and RDLE on the dataset without
the "service" column and without the column containing information about the past.
Emergency levels 1 (a) and 2 (b) are shown at the top (left and right, respectively), and
emergency levels 3 (c) and 4 (d) are shown on the bottom (left and right, respectively).

they used. The novel RDLL model developed in this thesis has always the best compro-

mise between the number of rules and accuracy for the emergency level 3. Regarding the

emergency level, 4 SIRUS appeared to be the best model when using a lower number of

relevant rules, closely followed by RDLL which was able to use even fewer rules to obtain

similarly (but slightly higher) MAE values.

Regarding the last dataset, which had a column with the type of service, the different

relations between the number of relevant rules and accuracies can be observed in Figure

5.5.

On emergency level 1 every model behaved similarly and had a similar plot, they all

had better accuracies when considering more rules with a non-null weight. However,

RDLL seems to be almost always the model with the MAE value by number of relevant

rules, closely followed by RuleFit and SIRUS when considering fewer rules.

SIRUS revealed himself as the best model by a significant difference from the other

79



CHAPTER 5. RESULTS

37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0
Mean Absolute Error

0

50

100

150

200

250

300

350

Nu
m

be
r o

f r
el

ev
an

t r
ul

es
Accuracy by Number of Rules on Emergency Level 1

RuleFit
SIRUS
REN(2)
REN(3)
RDLL
RDLE

(a)

18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5
Mean Absolute Error

0

20

40

60

80

100

120

Nu
m

be
r o

f r
el

ev
an

t r
ul

es

Accuracy by Number of Rules on Emergency Level 2
RuleFit
SIRUS
REN(2)
REN(3)
RDLL
RDLE

(b)

13.50 13.75 14.00 14.25 14.50 14.75 15.00 15.25 15.50
Mean Absolute Error

0

10

20

30

40

50

60

70

Nu
m

be
r o

f r
el

ev
an

t r
ul

es

Accuracy by Number of Rules on Emergency Level 3
RuleFit
SIRUS
REN(2)
REN(3)
RDLL
RDLE

(c)

7.6 7.8 8.0 8.2 8.4
Mean Absolute Error

0

10

20

30

40

50

60
Nu

m
be

r o
f r

el
ev

an
t r

ul
es

Accuracy by Number of Rules on Emergency Level 4
RuleFit
SIRUS
REN(2)
REN(3)
RDLL
RDLE

(d)

Figure 5.4: Relation between the number of relevant rules (rules given a non-null weight
by the regression equation) with the Mean Absolute Error in the different emergency
levels for RuleFit, SIRUS, REN(2), REN(3), RDLL, and RDLE on the dataset containing
information about the previous day without the "service" column. Emergency levels 1 (a)
and 2 (b) are shown at the top (left and right, respectively), and emergency levels 3 (c)
and 4 (d) are shown on the bottom (left and right, respectively).

models on emergency level 2. The closest models with the second-best number of relevant

rules by accuracy were RuleFit and RDLL. Even though all models had a similar behavior

once again, SIRUS had significantly lower values of MAE when considering the same

number of relevant rules than every other model.

For emergency levels 3 and 4 SIRUS, once again, revealed much better results than

every other model. Nevertheless, RDLL still achieved the second-best accuracy when

considering a low number of relevant rules in both of these emergency levels.
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Figure 5.5: Relation between the number of relevant rules (rules given a non-null weight
by the regression equation) with the Mean Absolute Error in the different emergency
levels for RuleFit, SIRUS, REN(2), REN(3), RDLL, and RDLE on the dataset containing
information about the type of service. Emergency levels 1 (a) and 2 (b) are shown at the
top (left and right, respectively), and emergency levels 3 (c) and 4 (d) are shown on the
bottom (left and right, respectively).
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6

Conclusion

Machine learning is present everywhere nowadays, with different algorithms deciding

what we see or listen to (for example, which advertisement we see on the internet or music

recommendations based on what we listened to). Even though in those activities the

output of the algorithm may be harmless, when applying these algorithms in high-stake

problems, like the medical sector, we should understand the reason behind that output.

Most machine learning algorithms are "black-box", and thus, we can not understand

the reason behind the output. This need for understanding gave rise to an interest in

interpretable models, which is translating into new and better machine learning models

where we can understand the predictions made.

The goal of this thesis was to prove that an interpretable machine learning algorithm

could achieve accuracies similar to a "black-box" model. To do so, besides using state-of-

the-art interpretable machine learning models, we introduced four novel interpretable

approaches. Firstly, we implemented six non-interpretable ("black-box") models (ARIMA,

SARIMA, Prophet, LSTM, GRU, and Transformer) to have a baseline comparison, and

then six interpretable models (RuleFit, SIRUS, REN, RDLL, RDLE, and RDLR), four of

which were introduced in this thesis (REN, RDLL, RDLE, and RDLR). After implementing

them, we compared the results from each algorithm, first according to their accuracy,

and then according to their complexity, in terms of how hard it is to understand their

predictions.

6.1 Contributions and Discussion

Concerning the accuracies of the different models implemented, it was observed that for

every model the hardest emergency level to predict the waiting time was level 1, which

was normal since it’s the one with the highest variability. Moreover, this emergency level

has the highest limit of waiting time (240 minutes), this is, the maximum waiting time the

Portuguese national health service tries to guarantee to its patients in the hospital "Santa

Maria". Emergency levels 2,3, and 4 have a limit of 120, 60, and 10 minutes respectively,

and is probably the reason, together with the lower variation, why most models had lower
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errors on higher emergency levels.

As seen in Chapter 5, in terms of accuracy, the LSTM, GRU, and Transformer had

considerably lower errors in emergency levels 1,2, and 3. Nonetheless, despite having

the lowest errors on emergency levels 1,2, and 3, LSTM, GRU, and Transformer had the

most complex models, by far, even when compared to the other "black-box" alternatives

(ARIMA, SARIMA, and Prophet) and their predictions can not be explained. On emer-

gency level 4, our interpretable approaches were able to outperform every "black-box"

model, including LSTM, GRU, and Transformer. This shows us that interpretable models

can have even better performances than "black-box" approaches. RuleFit achieved the

lowest errors among the interpretable methods on emergency levels 1,2 and 4. In emer-

gency level 2, the best accuracy among the interpretable methods was achieved by RDLR,

closely followed by REN(2) and RDLL.

Considering that some of the interpretable models implemented had similar or even

better accuracies than ARIMA, SARIMA, and Prophet on emergency levels 1,2,3 and

better performance than every "black-box" model in emergency level 4, we believe that

interpretable models can be used to address the problem of predicting the waiting times

in emergency departments. Moreover, as can be observed in tables 6.1 and 6.2, both

implementations of RuleFit, RDLL, and RDLR had a lower mean absolute error across

the 4 emergency levels than the ARIMA, SARIMA, and Prophet models.

ARIMA SARIMA Prophet LSTM GRU Transformer
Mean MAE 20.6 20.06 22.87 16.435 15.3 16.00

Table 6.1: Mean MAE values (in minutes) of the "black-box " models.

RuleFit SIRUS REN(1) REN(2) REN(3) RDLL RDLE RDLR
Mean MAE 19.08 | 19.86 20.19 20.45 20.32 21.17 19.79 20.93 19.46

Table 6.2: Mean MAE values (in minutes) of the interpretable models. The two MAE
values on RuleFit represent the MAE of the automatic implementation on the left and our
implementation on the right.

Regarding the complexity of the models, LSTM, GRU, and Transformer, had by far

the highest complexity. When comparing just the "black-box" models, these 3 models

had tens of thousands of parameters compared to the 5,8 and 9 of ARIMA, Prophet, and

SARIMA, respectively, which makes it hard to just explain how the models are working.

Concerning the sparsity of interpretable models, the results showed us that some of them

may not be considered interpretable as a whole, since they have a very high number of

rules to explain the model predictions. SIRUS, RDLL, and REN(3) had the lowest number

of rules across every dataset tested, which makes them the easiest models to understand.
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6.2. LIMITATIONS AND FUTURE WORK

The novel RDLL model introduced in this thesis not only has one of the lowest num-

bers of rules to explain its predictions, but it also has one of the lowest mean errors

among the interpretable models, as seen in table 6.2 (including a lower mean error than

SIRUS and REN(3)). We believe that this model had the best relation between sparsity

and accuracy across all models studied, followed by SIRUS and RuleFit.

We can conclude that even though the prediction of the waiting time in an emergency

department is extremely hard due to its high variation, it is possible to use an inter-

pretable machine learning model instead of a "black-box" one to make these predictions.

This way every person can understand the reason behind the predicted waiting times

without the need of being a Data Scientist or a domain expert. Moreover, if the reason for

the predictions doesn’t make sense, it is possible to change the model so that it gives less

importance to the rules that don’t make sense.

All the code used in this thesis, including all the models’ implementation, is publicly

available on https://github.com/LourencoVasconcelos/master-thesis.

6.2 Limitations and Future Work

The work on this thesis has some limitations that we must take into consideration. The

first limitation was the size of the dataset, having only 1 year and a half of observations

(531 days), we could not obtain yearly patterns. Secondly, as we saw in some other studies

in Section 2.2, introducing weather variables can improve the models’ performance, and

we did not have this data in this work. Moreover, we also did not have any information

about the emergency department itself, which was seen in Section 2.2 to be extremely

helpful in predicting the emergency department waiting times. This lack of extra infor-

mation may mean that the models here presented may have to be altered to work even

better with that information.

Following the progress made in this thesis we propose some future work. Firstly,

regarding the prediction of the waiting times in emergency departments, including more

features with information about the weather, information about the emergency depart-

ment, information regarding the national health service, or some other information that

domain experts think may influence these waiting times in the models could improve

the forecasts, as was seen in other studies. Secondly, the newly proposed methods RDLL,

RDLE, and RDLR could be studied in different areas where an interpretable model may

be needed, as it was seen that these novel methods can have accuracies similar to or even

better than RuleFit and SIRUS, which are the currently best state-of-the-art rule-based

methods. Moreover, the DL-Learner software may be an extremely helpful tool for inter-

pretable methods, something that was investigated in this thesis, and should be further

investigated in different problems and different solutions.
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A

Interpretable Models’ Accuracy by

Number of Relevant Rules

In this appendix we present the studied plots of each interpretable model of mean ab-

solute error by number of rules with a non-null weight (relevant rules) in each of the

emergency levels in the different datasets. Each plot shows two lines, one regarding the

accuracy on the training set and a second one regarding the accuracy on the validation

set. The plots regarding the REN models show six lines, two for each variation of this

model (one regarding the training accuracy and another regarding the validation accu-

racy). As mentioned before, the RuleFit model presented here is our own implementation

of RuleFit. For the variations of the REN model, we noticed that running the ElasticNet

solution more times did not necessarily lower the accuracy as observed in A.3. Lastly,

for the RDLR model, since changing the alpha value in the Ridge regression equation

did not affect the number of rules to which it attributed a non-null weight, we studied

how changing this value would affect the attribution of weights and consequently how it

changed the model’s accuracy (presented in A.6).

A.1 RuleFit
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Figure A.1: Relation between the number of rules given a non-null weight and the mean
absolute error of our implementation of RuleFit on the dataset without the column re-
garding the service and without information about the past on the different emergency
levels.
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(d) Emergency Level 4.

Figure A.2: Relation between the number of rules given a non-null weight and the mean
absolute error of our implementation of RuleFit on the dataset without the column regard-
ing the service and with information about the past on the different emergency levels.
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(a) Emergency Level 1.
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Figure A.3: Relation between the number of rules given a non-null weight and the mean
absolute error of our implementation of RuleFit on the dataset with the column regarding
the service on the different emergency levels.
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A.2 SIRUS

Figure A.4: Relation between the number of rules given a non-null weight and the mean
absolute error of SIRUS on the dataset without the column regarding the service and
without information about the past on the different emergency levels.
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Figure A.5: Relation between the number of rules given a non-null weight and the mean
absolute error of SIRUS on the dataset without the column regarding the service and with
information about the past on the different emergency levels.
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(c) Emergency Level 3.
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Figure A.6: Relation between the number of rules given a non-null weight and the mean
absolute error of SIRUS on the dataset with the column regarding the service on the
different emergency levels.
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Figure A.7: Relation between the number of rules given a non-null weight and the mean
absolute error of our three different REN implementations (running ElasticNet one, two
and three times) on the dataset without the column regarding the service and without
information about the past on the different emergency levels.
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Figure A.8: Relation between the number of rules given a non-null weight and the mean
absolute error of our three different REN implementations (running ElasticNet one, two
and three times) on the dataset without the column regarding the service and with infor-
mation about the past on the different emergency levels.
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Figure A.9: Relation between the number of rules given a non-null weight and the mean
absolute error of our three different REN implementations (running ElasticNet one, two
and three times) on the dataset with the column regarding the service on the different
emergency levels.
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(a) Emergency Level 1.
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(c) Emergency Level 3.

7.8 7.9 8.0 8.1 8.2
Mean Absolute Error

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f r
el

ev
an

t r
ul

es

Accuracy by number of rules
Validation
Train

(d) Emergency Level 4.

Figure A.10: Relation between the number of rules given a non-null weight and the mean
absolute error of the RDLL model on the dataset without the column regarding the service
and without information about the past on the different emergency levels.
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(a) Emergency Level 1.
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(d) Emergency Level 4.

Figure A.11: Relation between the number of rules given a non-null weight and the mean
absolute error of the RDLL model on the dataset without the column regarding the service
and with information about the past on the different emergency levels.
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9.8 10.0 10.2 10.4 10.6 10.8 11.0
Mean Absolute Error

2

4

6

8

10

12

14

16

Nu
m

be
r o

f r
el

ev
an

t r
ul

es

Accuracy by number of rules
Validation
Train

(d) Emergency Level 4.

Figure A.12: Relation between the number of rules given a non-null weight and the mean
absolute error of the RDLL model on the dataset with the column regarding the service
on the different emergency levels.
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(a) Emergency Level 1.
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Figure A.13: Relation between the number of rules given a non-null weight and the mean
absolute error of the RDLE model on the dataset without the column regarding the service
and without information about the past on the different emergency levels.
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(a) Emergency Level 1.
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(d) Emergency Level 4.

Figure A.14: Relation between the number of rules given a non-null weight and the mean
absolute error of the RDLE model on the dataset without the column regarding the service
and with information about the past on the different emergency levels.
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(c) Emergency Level 3.
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(d) Emergency Level 4.

Figure A.15: Relation between the number of rules given a non-null weight and the mean
absolute error of the RDLE model on the dataset with the column regarding the service
on the different emergency levels.
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(a) Emergency Level 1.
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(d) Emergency Level 4.

Figure A.16: Relation between the alpha value in the Ridge regression equation and the
mean absolute error of the RDLR model on the dataset without the column regarding the
service and without information about the past on the different emergency levels.
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(d) Emergency Level 4.

Figure A.17: Relation between the alpha value in the Ridge regression equation and the
mean absolute error of the RDLR model on the dataset without the column regarding the
service and with information about the past on the different emergency levels.
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(a) Emergency Level 1.
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Figure A.18: Relation between the alpha value in the Ridge regression equation and the
mean absolute error of the RDLR model on the dataset with the column regarding the
service on the different emergency levels.
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